These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
121 related articles for article (PubMed ID: 35861063)
1. iFIT: An automated web tool for determining enzyme-kinetic parameters based on the high-curvature region of progress curves. Petrič B; Goličnik M; Bavec A Acta Chim Slov; 2022 Jun; 69(2):478-482. PubMed ID: 35861063 [TBL] [Abstract][Full Text] [Related]
2. The Removal of Time-Concentration Data Points from Progress Curves Improves the Determination of Petrič B; Goličnik M; Bavec A Molecules; 2022 Feb; 27(4):. PubMed ID: 35209091 [TBL] [Abstract][Full Text] [Related]
3. Exact and approximate solutions for the decades-old Michaelis-Menten equation: Progress-curve analysis through integrated rate equations. Goličnik M Biochem Mol Biol Educ; 2011; 39(2):117-25. PubMed ID: 21445903 [TBL] [Abstract][Full Text] [Related]
4. Direct determination of enzyme kinetic parameters from single reactions using a new progress curve analysis tool. Bäuerle F; Zotter A; Schreiber G Protein Eng Des Sel; 2017 Mar; 30(3):149-156. PubMed ID: 27744288 [TBL] [Abstract][Full Text] [Related]
5. An algebraic model to determine substrate kinetic parameters by global nonlinear fit of progress curves. Reytor González ML; Cornell-Kennon S; Schaefer E; Kuzmič P Anal Biochem; 2017 Feb; 518():16-24. PubMed ID: 27823930 [TBL] [Abstract][Full Text] [Related]
6. On the estimation errors of K Stroberg W; Schnell S Biophys Chem; 2016 Dec; 219():17-27. PubMed ID: 27677118 [TBL] [Abstract][Full Text] [Related]
7. Progress curve analysis for enzyme and microbial kinetic reactions using explicit solutions based on the Lambert W function. Goudar CT; Harris SK; McInerney MJ; Suflita JM J Microbiol Methods; 2004 Dec; 59(3):317-26. PubMed ID: 15488275 [TBL] [Abstract][Full Text] [Related]
8. ICEKAT: an interactive online tool for calculating initial rates from continuous enzyme kinetic traces. Olp MD; Kalous KS; Smith BC BMC Bioinformatics; 2020 May; 21(1):186. PubMed ID: 32410570 [TBL] [Abstract][Full Text] [Related]
9. renz: An R package for the analysis of enzyme kinetic data. Aledo JC BMC Bioinformatics; 2022 May; 23(1):182. PubMed ID: 35578161 [TBL] [Abstract][Full Text] [Related]
10. Beyond the Michaelis-Menten equation: Accurate and efficient estimation of enzyme kinetic parameters. Choi B; Rempala GA; Kim JK Sci Rep; 2017 Dec; 7(1):17018. PubMed ID: 29208922 [TBL] [Abstract][Full Text] [Related]
11. Parameter estimation using a direct solution of the integrated Michaelis-Menten equation. Goudar CT; Sonnad JR; Duggleby RG Biochim Biophys Acta; 1999 Jan; 1429(2):377-83. PubMed ID: 9989222 [TBL] [Abstract][Full Text] [Related]
12. Michaelis-Menten equation for degradation of insoluble substrate. Andersen M; Kari J; Borch K; Westh P Math Biosci; 2018 Feb; 296():93-97. PubMed ID: 29197509 [TBL] [Abstract][Full Text] [Related]
13. Experimental designs for estimating the parameters of the Michaelis-Menten equation from progress curves of enzyme-catalyzed reactions. Duggleby RG; Clarke RB Biochim Biophys Acta; 1991 Nov; 1080(3):231-6. PubMed ID: 1954231 [TBL] [Abstract][Full Text] [Related]
14. Validity of the Michaelis-Menten equation--steady-state or reactant stationary assumption: that is the question. Schnell S FEBS J; 2014 Jan; 281(2):464-72. PubMed ID: 24245583 [TBL] [Abstract][Full Text] [Related]
15. Utilization of integrated Michaelis-Menten equations for enzyme inhibition diagnosis and determination of kinetic constants using Solver supplement of Microsoft Office Excel. Bezerra RM; Fraga I; Dias AA Comput Methods Programs Biomed; 2013 Jan; 109(1):26-31. PubMed ID: 23021091 [TBL] [Abstract][Full Text] [Related]
16. Beyond the Michaelis-Menten: Bayesian Inference for Enzyme Kinetic Analysis. Hong H; Choi B; Kim JK Methods Mol Biol; 2022; 2385():47-64. PubMed ID: 34888715 [TBL] [Abstract][Full Text] [Related]
17. A simple computer program with statistical tests for the analysis of enzyme kinetics. Brooks SP Biotechniques; 1992 Dec; 13(6):906-11. PubMed ID: 1476744 [TBL] [Abstract][Full Text] [Related]
18. Explicit reformulations of time-dependent solution for a Michaelis-Menten enzyme reaction model. Golicnik M Anal Biochem; 2010 Nov; 406(1):94-6. PubMed ID: 20599638 [TBL] [Abstract][Full Text] [Related]
19. Deviations from Michaelis-Menten kinetics. The possibility of complicated curves for simple kinetic schemes and the computer fitting of experimental data for acetylcholinesterase, acid phosphatase, adenosine deaminase, arylsulphatase, benzylamine oxidase, chymotrypsin, fumarase, galactose dehydrogenase, beta-galactosidase, lactate dehydrogenase, peroxidase and xanthine oxidase. Bardsley WG; Leff P; Kavanagh J; Waight RD Biochem J; 1980 Jun; 187(3):739-65. PubMed ID: 6821369 [TBL] [Abstract][Full Text] [Related]
20. Kinetic substrate quantification by fitting the enzyme reaction curve to the integrated Michaelis-Menten equation. Liao F; Tian KC; Yang X; Zhou QX; Zeng ZC; Zuo YP Anal Bioanal Chem; 2003 Mar; 375(6):756-62. PubMed ID: 12664174 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]