These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
124 related articles for article (PubMed ID: 35861154)
1. Solvent effects on the NMR shieldings of stacked DNA base pairs. Martínez FA; Adler NS; Cavasotto CN; Aucar GA Phys Chem Chem Phys; 2022 Aug; 24(30):18150-18160. PubMed ID: 35861154 [TBL] [Abstract][Full Text] [Related]
2. Intermolecular magnetic interactions in stacked DNA base pairs. Martínez FA; Aucar GA Phys Chem Chem Phys; 2017 Oct; 19(40):27817-27827. PubMed ID: 28990030 [TBL] [Abstract][Full Text] [Related]
3. Solvent polarity and hydrogen-bonding effects on the nitrogen NMR shieldings of N-nitrosamines and DFT calculations of the shieldings of C-, N-, and O-nitroso systems. Witanowski M; Biedrzycka Z; Sicinska W; Grabowski Z J Magn Reson; 2003 Oct; 164(2):212-9. PubMed ID: 14511589 [TBL] [Abstract][Full Text] [Related]
4. Theoretical investigation of the coupling between hydrogen atoms transfer and stacking interaction in guanine-cytosine dimers. Villani G Phys Chem Chem Phys; 2013 Nov; 15(44):19242-52. PubMed ID: 24108195 [TBL] [Abstract][Full Text] [Related]
5. At nonzero temperatures, stacked structures of methylated nucleic acid base pairs and microhydrated nonmethylated nucleic acid base pairs are favored over planar hydrogen-bonded structures: a molecular dynamics simulations study. Kabelác M; Hobza P Chemistry; 2001 May; 7(10):2067-74. PubMed ID: 11411979 [TBL] [Abstract][Full Text] [Related]
6. Exploring the influence of metal cations on individual hydrogen bonds in Watson-Crick guanine-cytosine DNA base pair: An interacting quantum atoms analysis. Pakzad F; Eskandari K J Comput Chem; 2024 Oct; 45(28):2397-2408. PubMed ID: 38922952 [TBL] [Abstract][Full Text] [Related]
7. Stabilization energies of the hydrogen-bonded and stacked structures of nucleic acid base pairs in the crystal geometries of CG, AT, and AC DNA steps and in the NMR geometry of the 5'-d(GCGAAGC)-3' hairpin: Complete basis set calculations at the MP2 and CCSD(T) levels. Dabkowska I; Gonzalez HV; Jurecka P; Hobza P J Phys Chem A; 2005 Feb; 109(6):1131-6. PubMed ID: 16833422 [TBL] [Abstract][Full Text] [Related]
8. Direct evidence for (G)O6···H Rangadurai A; Kremser J; Shi H; Kreutz C; Al-Hashimi HM J Magn Reson; 2019 Nov; 308():106589. PubMed ID: 31539864 [TBL] [Abstract][Full Text] [Related]
9. (G-H)*-C and G-(C-H)* radicals derived from the guanine.cytosine base pair cause DNA subunit lesions. Bera PP; Schaefer HF Proc Natl Acad Sci U S A; 2005 May; 102(19):6698-703. PubMed ID: 15814617 [TBL] [Abstract][Full Text] [Related]
10. Theoretical investigation of hydrogen atom transfer in the cytosine-guanine base pair and its coupling with electronic rearrangement. Concerted vs stepwise mechanism. Villani G J Phys Chem B; 2010 Jul; 114(29):9653-62. PubMed ID: 20593891 [TBL] [Abstract][Full Text] [Related]
11. Coupling between hydrogen atoms transfer and stacking interaction in adenine-thymine/guanine-cytosine complexes: a theoretical study. Villani G J Phys Chem B; 2014 May; 118(20):5439-52. PubMed ID: 24813562 [TBL] [Abstract][Full Text] [Related]
12. A time-dependent quantum dynamics investigation of the guanine-cytosine system: a six-dimensional model. Villani G J Chem Phys; 2008 Mar; 128(11):114306. PubMed ID: 18361570 [TBL] [Abstract][Full Text] [Related]
13. Combined effect of stacking and solvation on the spontaneous mutation in DNA. Cerón-Carrasco JP; Zúñiga J; Requena A; Perpète EA; Michaux C; Jacquemin D Phys Chem Chem Phys; 2011 Aug; 13(32):14584-9. PubMed ID: 21623431 [TBL] [Abstract][Full Text] [Related]
14. Stability of nucleic acid base pairs in organic solvents: molecular dynamics, molecular dynamics/quenching, and correlated ab initio study. Zendlová L; Hobza P; Kabelác M J Phys Chem B; 2007 Mar; 111(10):2591-609. PubMed ID: 17302446 [TBL] [Abstract][Full Text] [Related]
15. Hydrogen-bonded double-proton transfer in five guanine-cytosine base pairs after hydrogen atom addition. Lin Y; Wang H; Gao S; Li R; Schaefer HF J Phys Chem B; 2012 Aug; 116(30):8908-15. PubMed ID: 22774934 [TBL] [Abstract][Full Text] [Related]
16. True stabilization energies for the optimal planar hydrogen-bonded and stacked structures of guanine...cytosine, adenine...thymine, and their 9- and 1-methyl derivatives: complete basis set calculations at the MP2 and CCSD(T) levels and comparison with experiment. Jurecka P; Hobza P J Am Chem Soc; 2003 Dec; 125(50):15608-13. PubMed ID: 14664608 [TBL] [Abstract][Full Text] [Related]
17. Detection and evaluation of hydrogen bond strength in nucleic acid base pairs. Mohajeri A; Nobandegani FF J Phys Chem A; 2008 Jan; 112(2):281-95. PubMed ID: 18085756 [TBL] [Abstract][Full Text] [Related]
18. Mutual relationship between stacking and hydrogen bonding in DNA. Theoretical study of guanine-cytosine, guanine-5-methylcytosine, and their dimers. Acosta-Silva C; Branchadell V; Bertran J; Oliva A J Phys Chem B; 2010 Aug; 114(31):10217-27. PubMed ID: 20684646 [TBL] [Abstract][Full Text] [Related]
19. Ultrafast two-dimensional infrared spectroscopy of guanine-cytosine base pairs in DNA oligomers. Greve C; Elsaesser T J Phys Chem B; 2013 Nov; 117(45):14009-17. PubMed ID: 24127664 [TBL] [Abstract][Full Text] [Related]
20. Combined Monte Carlo and quantum mechanics study of the hydration of the guanine-cytosine base pair. Coutinho K; Ludwig V; Canuto S Phys Rev E Stat Nonlin Soft Matter Phys; 2004 Jun; 69(6 Pt 1):061902. PubMed ID: 15244612 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]