These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
122 related articles for article (PubMed ID: 35861318)
21. Synthesis of TiO Bharath G; Prakash J; Rambabu K; Venkatasubbu GD; Kumar A; Lee S; Theerthagiri J; Choi MY; Banat F Environ Pollut; 2021 Jul; 281():116990. PubMed ID: 33812129 [TBL] [Abstract][Full Text] [Related]
22. Facile Fabrication of a Highly Crystalline and Well-Interconnected Hematite Nanoparticle Photoanode for Efficient Visible-Light-Driven Water Oxidation. Katsuki T; Zahran ZN; Tanaka K; Eo T; Mohamed EA; Tsubonouchi Y; Berber MR; Yagi M ACS Appl Mater Interfaces; 2021 Aug; 13(33):39282-39290. PubMed ID: 34387481 [TBL] [Abstract][Full Text] [Related]
23. Enhanced photoelectrochemical activity of α-Fe Chen Y; Jiang D; Li L; Li Z; Li Q; Shi R; Li J; Wang LN Nanotechnology; 2020 Apr; 31(17):174002. PubMed ID: 31842002 [TBL] [Abstract][Full Text] [Related]
24. All-electrodeposited amorphous MoS Shang M; Zhang J; Qi H; Gao Y; Yan J; Song W Biosens Bioelectron; 2019 Jul; 136():53-59. PubMed ID: 31035027 [TBL] [Abstract][Full Text] [Related]
25. Constructing n-ZnO@Au heterogeneous nanorod arrays on p-Si substrate as efficient photocathode for water splitting. Bao Z; Xu X; Zhou G; Hu J Nanotechnology; 2016 Jul; 27(30):305403. PubMed ID: 27306198 [TBL] [Abstract][Full Text] [Related]
26. Surface engineered doping of hematite nanorod arrays for improved photoelectrochemical water splitting. Shen S; Zhou J; Dong CL; Hu Y; Tseng EN; Guo P; Guo L; Mao SS Sci Rep; 2014 Oct; 4():6627. PubMed ID: 25316219 [TBL] [Abstract][Full Text] [Related]
27. Engineering the Interfacial Microenvironment via Surface Hydroxylation to Realize the Global Optimization of Electrochemical CO Han X; Zhang T; Biset-Peiró M; Zhang X; Li J; Tang W; Tang P; Morante JR; Arbiol J ACS Appl Mater Interfaces; 2022 Jul; 14(28):32157-32165. PubMed ID: 35815662 [TBL] [Abstract][Full Text] [Related]
28. Electrochemical Reduction of CO Hu W; Li J; Ma L; Su W; Zhu Y; Li W; Chen Y; Zou L; Zou Z; Yang B; Wen K; Yang H ACS Appl Mater Interfaces; 2021 Dec; 13(48):57462-57469. PubMed ID: 34843201 [TBL] [Abstract][Full Text] [Related]
29. Simultaneous Enhancement of Charge Separation and Hole Transportation in a W:α-Fe Masoumi Z; Tayebi M; Kolaei M; Tayyebi A; Ryu H; Jang JI; Lee BK ACS Appl Mater Interfaces; 2021 Aug; 13(33):39215-39229. PubMed ID: 34374510 [TBL] [Abstract][Full Text] [Related]
30. ZnO rod/reduced graphene oxide sensitized by α-Fe Wang X; Li Q; Zhou C; Cao Z; Zhang R J Colloid Interface Sci; 2019 Oct; 554():335-343. PubMed ID: 31306945 [TBL] [Abstract][Full Text] [Related]
31. Synthesis of novel AuPd nanoparticles decorated one-dimensional ZnO nanorod arrays with enhanced photoelectrochemical water splitting activity. Lu Y; Zhang J; Ge L; Han C; Qiu P; Fang S J Colloid Interface Sci; 2016 Dec; 483():146-153. PubMed ID: 27552423 [TBL] [Abstract][Full Text] [Related]
32. Hematite nanorod arrays top-decorated with an MIL-101 layer for photoelectrochemical water oxidation. Wang H; He X; Li W; Chen H; Fang W; Tian P; Xiao F; Zhao L Chem Commun (Camb); 2019 Sep; 55(76):11382-11385. PubMed ID: 31482876 [TBL] [Abstract][Full Text] [Related]
33. A microstructured p-Si photocathode outcompetes Pt as a counter electrode to hematite in photoelectrochemical water splitting. Kawde A; Annamalai A; Sellstedt A; Glatzel P; Wågberg T; Messinger J Dalton Trans; 2019 Jan; 48(4):1166-1170. PubMed ID: 30534760 [TBL] [Abstract][Full Text] [Related]
34. Electrochemical fabrication of ZnO-CdSe core-shell nanorod arrays for efficient photoelectrochemical water splitting. Miao J; Yang HB; Khoo SY; Liu B Nanoscale; 2013 Nov; 5(22):11118-24. PubMed ID: 24077389 [TBL] [Abstract][Full Text] [Related]
35. Engineering Bismuth-Tin Interface in Bimetallic Aerogel with a 3D Porous Structure for Highly Selective Electrocatalytic CO Wu Z; Wu H; Cai W; Wen Z; Jia B; Wang L; Jin W; Ma T Angew Chem Int Ed Engl; 2021 May; 60(22):12554-12559. PubMed ID: 33720479 [TBL] [Abstract][Full Text] [Related]
36. Highly efficient utilization of light and charge separation over a hematite photoanode achieved through a noncontact photonic crystal film for photoelectrochemical water splitting. Yu WY; Ma DK; Yang DP; Yang XG; Xu QL; Chen W; Huang S Phys Chem Chem Phys; 2020 Sep; 22(36):20202-20211. PubMed ID: 32966422 [TBL] [Abstract][Full Text] [Related]
37. High Performance 3D Self-Supporting Cu-Bi Aerogels for Electrocatalytic Reduction of CO Li H; Yue X; Che J; Xiao Z; Yu X; Sun F; Xue C; Xiang J ChemSusChem; 2022 Apr; 15(7):e202200226. PubMed ID: 35150202 [TBL] [Abstract][Full Text] [Related]
38. Physical synthesis methodology and enhanced gas sensing and photoelectrochemical performance of 1D serrated zinc oxide-zinc ferrite nanocomposites. Liang YC; Liu SL; Hsia HY Nanoscale Res Lett; 2015 Dec; 10(1):1059. PubMed ID: 26334546 [TBL] [Abstract][Full Text] [Related]
39. Efficient Solar-Induced Photoelectrochemical Response Using Coupling Semiconductor TiO₂-ZnO Nanorod Film. Abd Samad NA; Lai CW; Lau KS; Abd Hamid SB Materials (Basel); 2016 Nov; 9(11):. PubMed ID: 28774068 [TBL] [Abstract][Full Text] [Related]
40. Boosting Production of HCOOH from CO Duan YX; Zhou YT; Yu Z; Liu DX; Wen Z; Yan JM; Jiang Q Angew Chem Int Ed Engl; 2021 Apr; 60(16):8798-8802. PubMed ID: 33512043 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]