These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

122 related articles for article (PubMed ID: 35861343)

  • 1. Ultrafast Förster resonance energy transfer between tyrosine and tryptophan: potential contributions to protein-water dynamics measurements.
    Li H; Jiang G; Jia M; Cao S; Zhang S; Chen J; Sun H; Xu J; Knutson JR
    Phys Chem Chem Phys; 2022 Aug; 24(30):18055-18066. PubMed ID: 35861343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Ultrafast Förster resonance energy transfer from tyrosine to tryptophan in monellin: potential intrinsic spectroscopic ruler.
    Li H; Cao S; Zhang S; Chen J; Xu J; Knutson JR
    Phys Chem Chem Phys; 2023 Mar; 25(10):7239-7250. PubMed ID: 36853740
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fluorescence kinetics of Trp-Trp dipeptide and its derivatives in water via ultrafast fluorescence spectroscopy.
    Jia M; Yi H; Chang M; Cao X; Li L; Zhou Z; Pan H; Chen Y; Zhang S; Xu J
    J Photochem Photobiol B; 2015 Aug; 149():243-8. PubMed ID: 26111991
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Conformational heterogeneity of a leucine enkephalin analogue in aqueous solution and sodium dodecyl sulfate micelles: comparison of time-resolved FRET and molecular dynamics simulations.
    Unruh JR; Kuczera K; Johnson CK
    J Phys Chem B; 2009 Oct; 113(43):14381-92. PubMed ID: 19780516
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Distance distributions of short polypeptides recovered by fluorescence resonance energy transfer in the 10 A domain.
    Sahoo H; Roccatano D; Zacharias M; Nau WM
    J Am Chem Soc; 2006 Jun; 128(25):8118-9. PubMed ID: 16787059
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Modelling Förster resonance energy transfer (FRET) using anisotropy resolved multi-dimensional emission spectroscopy (ARMES).
    Gordon F; Elcoroaristizabal S; Ryder AG
    Biochim Biophys Acta Gen Subj; 2021 Feb; 1865(2):129770. PubMed ID: 33214128
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Ultrafast dynamics of nonequilibrium resonance energy transfer and probing globular protein flexibility of myoglobin.
    Stevens JA; Link JJ; Zang C; Wang L; Zhong D
    J Phys Chem A; 2012 Mar; 116(11):2610-9. PubMed ID: 21863851
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Interaction of the anticancer p28 peptide with p53-DBD as studied by fluorescence, FRET, docking and MD simulations.
    Bizzarri AR; Moscetti I; Cannistraro S
    Biochim Biophys Acta Gen Subj; 2019 Feb; 1863(2):342-350. PubMed ID: 30419285
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduced fluorescence lifetime heterogeneity of 5-fluorotryptophan in comparison to tryptophan in proteins: implication for resonance energy transfer experiments.
    Sarkar SS; Udgaonkar JB; Krishnamoorthy G
    J Phys Chem B; 2011 Jun; 115(22):7479-86. PubMed ID: 21574591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A 10-A spectroscopic ruler applied to short polyprolines.
    Sahoo H; Roccatano D; Hennig A; Nau WM
    J Am Chem Soc; 2007 Aug; 129(31):9762-72. PubMed ID: 17629273
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrafast tryptophan-to-heme electron transfer in myoglobins revealed by UV 2D spectroscopy.
    Consani C; Auböck G; van Mourik F; Chergui M
    Science; 2013 Mar; 339(6127):1586-9. PubMed ID: 23393092
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Improved Modeling of Thioamide FRET Quenching by Including Conformational Restriction and Coulomb Coupling.
    Yoon J; Ferrie JJ; Petersson EJ
    J Phys Chem B; 2020 Nov; 124(47):10653-10662. PubMed ID: 33196192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Quasi-static self-quenching of Trp-X and X-Trp dipeptides in water: ultrafast fluorescence decay.
    Xu J; Knutson JR
    J Phys Chem B; 2009 Sep; 113(35):12084-9. PubMed ID: 19708715
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparison of Förster-resonance-energy-transfer acceptors for tryptophan and tyrosine residues in native proteins as donors.
    zhang Y; Yang X; Liu L; Huang X; Pu J; Long G; Zhang L; Liu D; Xu B; Liao J; Liao F
    J Fluoresc; 2013 Jan; 23(1):147-57. PubMed ID: 23001429
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Intramolecular distances and dynamics from the combined photon statistics of single-molecule FRET and photoinduced electron transfer.
    Haenni D; Zosel F; Reymond L; Nettels D; Schuler B
    J Phys Chem B; 2013 Oct; 117(42):13015-28. PubMed ID: 23718771
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Fluorescence resonance energy transfer from tryptophan to folic acid in micellar media and deionised water.
    Mote US; Patil SR; Bhosale SH; Han SH; Kolekar GB
    J Photochem Photobiol B; 2011 Apr; 103(1):16-21. PubMed ID: 21288734
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Ultrafast dynamics of Förster resonance energy transfer and photo-induced charge transfer in cationic polyfluorene/dye-labeled DNA complex.
    Kyhm K; Kim I; Kang M; Woo HY
    J Nanosci Nanotechnol; 2012 Oct; 12(10):7733-8. PubMed ID: 23421134
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Quantitative interpretation of FRET experiments via molecular simulation: force field and validation.
    Best RB; Hofmann H; Nettels D; Schuler B
    Biophys J; 2015 Jun; 108(11):2721-31. PubMed ID: 26039173
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Principles of Resonance Energy Transfer.
    Szabó Á; Szöllősi J; Nagy P
    Curr Protoc; 2022 Dec; 2(12):e625. PubMed ID: 36507547
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diffusion-enhanced Förster resonance energy transfer and the effects of external quenchers and the donor quantum yield.
    Jacob MH; Dsouza RN; Ghosh I; Norouzy A; Schwarzlose T; Nau WM
    J Phys Chem B; 2013 Jan; 117(1):185-98. PubMed ID: 23215358
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.