These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

110 related articles for article (PubMed ID: 35861384)

  • 1. Molecular electronic refrigeration against parallel phonon heat leakage channels.
    Tabatabaei F; Merabia S; Gotsmann B; Prunnila M; Niehaus TA
    Nanoscale; 2022 Aug; 14(30):11003-11011. PubMed ID: 35861384
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Green's function density functional tight-binding (gDFTB) method for molecular electronic conduction.
    Reimers JR; Solomon GC; Gagliardi A; Bilić A; Hush NS; Frauenheim T; Di Carlo A; Pecchia A
    J Phys Chem A; 2007 Jul; 111(26):5692-702. PubMed ID: 17530826
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum Transport in a Silicon Nanowire FET Transistor: Hot Electrons and Local Power Dissipation.
    Martinez A; Barker JR
    Materials (Basel); 2020 Jul; 13(15):. PubMed ID: 32722649
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Quantum Phonon Transport in Nanomaterials: Combining Atomistic with Non-Equilibrium Green's Function Techniques.
    Medrano Sandonas L; Gutierrez R; Pecchia A; Croy A; Cuniberti G
    Entropy (Basel); 2019 Jul; 21(8):. PubMed ID: 33267449
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nonequilibrium Green's function method for phonon heat transport in quantum system.
    Zeng YJ; Ding ZK; Pan H; Feng YX; Chen KQ
    J Phys Condens Matter; 2022 Mar; 34(22):. PubMed ID: 35263716
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Probing electron-phonon excitations in molecular junctions by quantum interference.
    Bessis C; Della Rocca ML; Barraud C; Martin P; Lacroix JC; Markussen T; Lafarge P
    Sci Rep; 2016 Feb; 6():20899. PubMed ID: 26864735
    [TBL] [Abstract][Full Text] [Related]  

  • 7. High-temperature thermoelectric transport behavior of the Al/γ-Al
    Samanta PN; Leszczynski J
    Phys Chem Chem Phys; 2018 May; 20(21):14513-14524. PubMed ID: 29766155
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Phonon cooling of nanomechanical beams with tunnel junctions.
    Koppinen PJ; Maasilta IJ
    Phys Rev Lett; 2009 Apr; 102(16):165502. PubMed ID: 19518725
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Adsorbate-driven cooling of carbene-based molecular junctions.
    Foti G; Vázquez H
    Beilstein J Nanotechnol; 2017; 8():2060-2068. PubMed ID: 29090108
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The DFT-NEGF scrutiny of doped fullerene junctions.
    Kaur M; Sawhney RS; Engles D
    J Mol Model; 2017 Aug; 23(8):221. PubMed ID: 28702804
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Development and application of a 2-electron reduced density matrix approach to electron transport via molecular junctions.
    Hoy EP; Mazziotti DA; Seideman T
    J Chem Phys; 2017 Nov; 147(18):184110. PubMed ID: 29141419
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Reconciling perturbative approaches in phonon-assisted transport junctions.
    Agarwalla BK; Segal D
    J Chem Phys; 2016 Feb; 144(7):074102. PubMed ID: 26896971
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Computational study of oxide stoichiometry and variability in the Al/AlOx/Al tunnel junction.
    Lapham P; Georgiev VP
    Nanotechnology; 2022 Apr; 33(26):. PubMed ID: 35303731
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Manipulation of non-linear heat currents in the dissipative Anderson-Holstein model.
    De B; Muralidharan B
    J Phys Condens Matter; 2020 Jan; 32(3):035305. PubMed ID: 31469086
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Peltier cooling in molecular junctions.
    Cui L; Miao R; Wang K; Thompson D; Zotti LA; Cuevas JC; Meyhofer E; Reddy P
    Nat Nanotechnol; 2018 Feb; 13(2):122-127. PubMed ID: 29255291
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Thermionic cooling devices based on resonant-tunneling AlGaAs/GaAs heterostructure.
    Bescond M; Logoteta D; Michelini F; Cavassilas N; Yan T; Yangui A; Lannoo M; Hirakawa K
    J Phys Condens Matter; 2018 Feb; 30(6):064005. PubMed ID: 29297468
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Nanoscale Quantum Thermal Conductance at Water Interface: Green's Function Approach Based on One-Dimensional Phonon Model.
    Umegaki T; Tanaka S
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32151110
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Non-linear phonon Peltier effect in dissipative quantum dot systems.
    De B; Muralidharan B
    Sci Rep; 2018 Mar; 8(1):5185. PubMed ID: 29581528
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Enhancement of thermoelectric performance in graphenylene nanoribbons by suppressing phonon thermal conductance: the role of phonon local resonance.
    Wu CW; Zhou WX; Xie G; Chen XK; Wu D; Fan ZQ
    Nanotechnology; 2022 Feb; 33(21):. PubMed ID: 35130521
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Communication: energy-dependent resonance broadening in symmetric and asymmetric molecular junctions from an ab initio non-equilibrium Green's function approach.
    Liu ZF; Neaton JB
    J Chem Phys; 2014 Oct; 141(13):131104. PubMed ID: 25296777
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.