These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

125 related articles for article (PubMed ID: 35861489)

  • 1. Burn characterization using object-oriented hyperspectral image classification.
    Parasca SV; Calin MA
    J Biophotonics; 2022 Nov; 15(11):e202200106. PubMed ID: 35861489
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Comparative analysis of denoising techniques in burn depth discrimination from burn hyperspectral images.
    Calin MA; Piticescu RR; Parasca SV
    J Biophotonics; 2023 Jul; 16(7):e202200374. PubMed ID: 36906680
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Can spectral-spatial image segmentation be used to discriminate experimental burn wounds?
    Paluchowski LA; Nordgaard HB; Bjorgan A; Hov H; Berget SM; Randeberg LL
    J Biomed Opt; 2016 Oct; 21(10):101413. PubMed ID: 27228458
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Burn wound classification model using spatial frequency-domain imaging and machine learning.
    Rowland R; Ponticorvo A; Baldado M; Kennedy GT; Burmeister DM; Christy RJ; Bernal NP; Durkin AJ
    J Biomed Opt; 2019 May; 24(5):1-9. PubMed ID: 31134769
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Evaluation of hyperspectral imaging as a modern aid in clinical assessment of burn wounds of the upper extremity.
    Promny D; Aich J; PĆ¼ski T; Marti Edo A; Reichert B; Billner M
    Burns; 2022 May; 48(3):615-622. PubMed ID: 34857418
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mangrove Species Classification from Unmanned Aerial Vehicle Hyperspectral Images Using Object-Oriented Methods Based on Feature Combination and Optimization.
    Ye F; Zhou B
    Sensors (Basel); 2024 Jun; 24(13):. PubMed ID: 39000887
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multi-feature representation for burn depth classification via burn images.
    Zhang B; Zhou J
    Artif Intell Med; 2021 Aug; 118():102128. PubMed ID: 34412845
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Object-oriented classification approach for bone metastasis mapping from whole-body bone scintigraphy.
    Calin MA; Elfarra FG; Parasca SV
    Phys Med; 2021 Apr; 84():141-148. PubMed ID: 33894584
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fusion of Hyperspectral CASI and Airborne LiDAR Data for Ground Object Classification through Residual Network.
    Chang Z; Yu H; Zhang Y; Wang K
    Sensors (Basel); 2020 Jul; 20(14):. PubMed ID: 32708693
    [TBL] [Abstract][Full Text] [Related]  

  • 10. 3D-perfusion analysis of burn wounds using hyperspectral imaging.
    Marotz J; Schulz T; Seider S; Cruz D; Aljowder A; Promny D; Daeschlein G; Wild T; Siemers F
    Burns; 2021 Feb; 47(1):157-170. PubMed ID: 33277087
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A deep learning model for burn depth classification using ultrasound imaging.
    Lee S; Rahul ; Lukan J; Boyko T; Zelenova K; Makled B; Parsey C; Norfleet J; De S
    J Mech Behav Biomed Mater; 2022 Jan; 125():104930. PubMed ID: 34781225
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Convolution neural network for effective burn region segmentation of color images.
    Chauhan J; Goyal P
    Burns; 2021 Jun; 47(4):854-862. PubMed ID: 33158632
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Real-time Burn Classification using Ultrasound Imaging.
    Lee S; Rahul ; Ye H; Chittajallu D; Kruger U; Boyko T; Lukan JK; Enquobahrie A; Norfleet J; De S
    Sci Rep; 2020 Apr; 10(1):5829. PubMed ID: 32242131
    [TBL] [Abstract][Full Text] [Related]  

  • 14.
    Parvez MA; Yashiro K; Nagahama Y; Tsunoi Y; Saitoh D; Sato S; Nishidate I
    J Biomed Opt; 2024 Feb; 29(2):026003. PubMed ID: 38361505
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The Use of Visible-Light Hyperspectral Imaging in Evaluating Burn Wounds: A Case Report.
    McCarthy M; Prete VI; Oh S; Gu G; Lujan-Hernandez J; Stamer D; Lalikos J
    J Burn Care Res; 2021 Aug; 42(4):825-828. PubMed ID: 33914874
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of burns using hyperspectral imaging technique - a preliminary study.
    Calin MA; Parasca SV; Savastru R; Manea D
    Burns; 2015 Feb; 41(1):118-24. PubMed ID: 24997530
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Full-field burn depth detection based on near-infrared hyperspectral imaging and ensemble regression.
    Wang P; Cao Y; Yin M; Li Y; Lv S; Huang L; Zhang D; Luo Y; Wu J
    Rev Sci Instrum; 2019 Jun; 90(6):064103. PubMed ID: 31255006
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Adoption of Machine Learning in Intelligent Terrain Classification of Hyperspectral Remote Sensing Images.
    Li Y; Wang J; Gao T; Sun Q; Zhang L; Tang M
    Comput Intell Neurosci; 2020; 2020():8886932. PubMed ID: 32952545
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Improved classification accuracy of powdery mildew infection levels of wine grapes by spatial-spectral analysis of hyperspectral images.
    Knauer U; Matros A; Petrovic T; Zanker T; Scott ES; Seiffert U
    Plant Methods; 2017; 13():47. PubMed ID: 28630643
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Ensemble of ERDTs for Spectral-Spatial Classification of Hyperspectral Images Using MRS Object-Guided Morphological Profiles.
    Samat A; Li E; Liu S; Miao Z; Wang W
    J Imaging; 2020 Oct; 6(11):. PubMed ID: 34460558
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.