These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
63. Interaction of the spike protein RBD from SARS-CoV-2 with ACE2: Similarity with SARS-CoV, hot-spot analysis and effect of the receptor polymorphism. Othman H; Bouslama Z; Brandenburg JT; da Rocha J; Hamdi Y; Ghedira K; Srairi-Abid N; Hazelhurst S Biochem Biophys Res Commun; 2020 Jun; 527(3):702-708. PubMed ID: 32410735 [TBL] [Abstract][Full Text] [Related]
64. Scaffold morphing of arbidol (umifenovir) in search of multi-targeting therapy halting the interaction of SARS-CoV-2 with ACE2 and other proteases involved in COVID-19. Choudhary S; Silakari O Virus Res; 2020 Nov; 289():198146. PubMed ID: 32866534 [TBL] [Abstract][Full Text] [Related]
65. Active components in Ephedra sinica stapf disrupt the interaction between ACE2 and SARS-CoV-2 RBD: Potent COVID-19 therapeutic agents. Mei J; Zhou Y; Yang X; Zhang F; Liu X; Yu B J Ethnopharmacol; 2021 Oct; 278():114303. PubMed ID: 34102269 [TBL] [Abstract][Full Text] [Related]
66. Rationally Designed ACE2-Derived Peptides Inhibit SARS-CoV-2. Larue RC; Xing E; Kenney AD; Zhang Y; Tuazon JA; Li J; Yount JS; Li PK; Sharma A Bioconjug Chem; 2021 Jan; 32(1):215-223. PubMed ID: 33356169 [TBL] [Abstract][Full Text] [Related]
67. Heparin-Induced Allosteric Changes in SARS-CoV-2 Spike Protein Facilitate ACE2 Binding and Viral Entry. Petitjean SJL; Eeckhout S; Delguste M; Zhang Q; Durlet K; Alsteens D Nano Lett; 2023 Dec; 23(24):11678-11684. PubMed ID: 38055954 [TBL] [Abstract][Full Text] [Related]
68. Inhibition of S-protein RBD and hACE2 Interaction for Control of SARSCoV- 2 Infection (COVID-19). Nayak SK Mini Rev Med Chem; 2021; 21(6):689-703. PubMed ID: 33208074 [TBL] [Abstract][Full Text] [Related]
69. Mulberrofuran G, a Mulberry Component, Prevents SARS-CoV-2 Infection by Blocking the Interaction between SARS-CoV-2 Spike Protein S1 Receptor-Binding Domain and Human Angiotensin-Converting Enzyme 2 Receptor. Kim YS; Kim B; Kwon EB; Chung HS; Choi JG Nutrients; 2022 Oct; 14(19):. PubMed ID: 36235822 [TBL] [Abstract][Full Text] [Related]
70. Virus-Receptor Interactions of Glycosylated SARS-CoV-2 Spike and Human ACE2 Receptor. Zhao P; Praissman JL; Grant OC; Cai Y; Xiao T; Rosenbalm KE; Aoki K; Kellman BP; Bridger R; Barouch DH; Brindley MA; Lewis NE; Tiemeyer M; Chen B; Woods RJ; Wells L Cell Host Microbe; 2020 Oct; 28(4):586-601.e6. PubMed ID: 32841605 [TBL] [Abstract][Full Text] [Related]
71. Inhibition of ACE2-Spike Interaction by an ACE2 Binder Suppresses SARS-CoV-2 Entry. Shin YH; Jeong K; Lee J; Lee HJ; Yim J; Kim J; Kim S; Park SB Angew Chem Int Ed Engl; 2022 Mar; 61(11):e202115695. PubMed ID: 35043545 [TBL] [Abstract][Full Text] [Related]
72. Computational discovery of dual potential inhibitors of SARS-CoV-2 spike/ACE2 and M Bekono BD; Onguéné PA; Simoben CV; Owono LCO; Ntie-Kang F Eur Biophys J; 2024 Aug; 53(5-6):277-298. PubMed ID: 38907013 [TBL] [Abstract][Full Text] [Related]
73. SARS-CoV-2 and SARS-CoV Spike-Mediated Cell-Cell Fusion Differ in Their Requirements for Receptor Expression and Proteolytic Activation. Hörnich BF; Großkopf AK; Schlagowski S; Tenbusch M; Kleine-Weber H; Neipel F; Stahl-Hennig C; Hahn AS J Virol; 2021 Apr; 95(9):. PubMed ID: 33608407 [TBL] [Abstract][Full Text] [Related]
74. Computational repurposing approach for targeting the critical spike mutations in B.1.617.2 (delta), AY.1 (delta plus) and C.37 (lambda) SARS-CoV-2 variants using exhaustive structure-based virtual screening, molecular dynamic simulations and MM-PBSA methods. Ebrahimi M; Karami L; Alijanianzadeh M Comput Biol Med; 2022 Aug; 147():105709. PubMed ID: 35728285 [TBL] [Abstract][Full Text] [Related]
75. Contributions of human ACE2 and TMPRSS2 in determining host-pathogen interaction of COVID-19. Senapati S; Banerjee P; Bhagavatula S; Kushwaha PP; Kumar S J Genet; 2021; 100(1):. PubMed ID: 33707363 [TBL] [Abstract][Full Text] [Related]
76. SARS-CoV-2 host tropism: An in silico analysis of the main cellular factors. Rangel HR; Ortega JT; Maksoud S; Pujol FH; Serrano ML Virus Res; 2020 Nov; 289():198154. PubMed ID: 32918944 [TBL] [Abstract][Full Text] [Related]
77. Epstein-Barr Virus Lytic Replication Induces ACE2 Expression and Enhances SARS-CoV-2 Pseudotyped Virus Entry in Epithelial Cells. Verma D; Church TM; Swaminathan S J Virol; 2021 Jun; 95(13):e0019221. PubMed ID: 33853968 [TBL] [Abstract][Full Text] [Related]
78. Testing of the inhibitory effects of loratadine and desloratadine on SARS-CoV-2 spike pseudotyped virus viropexis. Hou Y; Ge S; Li X; Wang C; He H; He L Chem Biol Interact; 2021 Apr; 338():109420. PubMed ID: 33609497 [TBL] [Abstract][Full Text] [Related]
79. An integrated drug repurposing strategy for the rapid identification of potential SARS-CoV-2 viral inhibitors. Trezza A; Iovinelli D; Santucci A; Prischi F; Spiga O Sci Rep; 2020 Aug; 10(1):13866. PubMed ID: 32807895 [TBL] [Abstract][Full Text] [Related]
80. Functional and genetic analysis of viral receptor ACE2 orthologs reveals a broad potential host range of SARS-CoV-2. Liu Y; Hu G; Wang Y; Ren W; Zhao X; Ji F; Zhu Y; Feng F; Gong M; Ju X; Zhu Y; Cai X; Lan J; Guo J; Xie M; Dong L; Zhu Z; Na J; Wu J; Lan X; Xie Y; Wang X; Yuan Z; Zhang R; Ding Q Proc Natl Acad Sci U S A; 2021 Mar; 118(12):. PubMed ID: 33658332 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]