These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

120 related articles for article (PubMed ID: 35861590)

  • 1. Kinetic Characterization and Computational Modeling of
    Hassan BA; Liu ZA; Milicaj J; Kim MS; Tyson M; Sham YY; Taylor EA
    Biochemistry; 2022 Aug; 61(15):1572-1584. PubMed ID: 35861590
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Stories Tryptophans Tell: Exploring Protein Dynamics of Heptosyltransferase I from Escherichia coli.
    Cote JM; Ramirez-Mondragon CA; Siegel ZS; Czyzyk DJ; Gao J; Sham YY; Mukerji I; Taylor EA
    Biochemistry; 2017 Feb; 56(6):886-895. PubMed ID: 28098447
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cloning and characterization of the Escherichia coli Heptosyltransferase III: Exploring substrate specificity in lipopolysaccharide core biosynthesis.
    Mudapaka J; Taylor EA
    FEBS Lett; 2015 Jun; 589(13):1423-9. PubMed ID: 25957775
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Lipopolysaccharide biosynthesis without the lipids: recognition promiscuity of Escherichia coli heptosyltransferase I.
    Czyzyk DJ; Liu C; Taylor EA
    Biochemistry; 2011 Dec; 50(49):10570-2. PubMed ID: 22059588
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of the Escherichia coli heptosyltransferase WaaC: binary complexes with ADP and ADP-2-deoxy-2-fluoro heptose.
    Grizot S; Salem M; Vongsouthi V; Durand L; Moreau F; Dohi H; Vincent S; Escaich S; Ducruix A
    J Mol Biol; 2006 Oct; 363(2):383-94. PubMed ID: 16963083
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Opposites Attract:
    Cote JM; Hecht CJS; Patel KR; Ramirez-Mondragon CA; Sham YY; Taylor EA
    Biochemistry; 2020 Sep; 59(34):3135-3147. PubMed ID: 32011131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kdo-(2 --> 8)-Kdo-(2 --> 4)-Kdo but not Kdo-(2 --> 4)-Kdo-(2 --> 4)-Kdo is an acceptor for transfer of L-glycero-alpha-D-manno-heptose by Escherichia coli heptosyltransferase I (WaaC).
    Gronow S; Lindner B; Brade H; Müller-Loennies S
    Innate Immun; 2009 Feb; 15(1):13-23. PubMed ID: 19201821
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Conserved Conformational Hierarchy across Functionally Divergent Glycosyltransferases of the GT-B Structural Superfamily as Determined from Microsecond Molecular Dynamics.
    Ramirez-Mondragon CA; Nguyen ME; Milicaj J; Hassan BA; Tucci FJ; Muthyala R; Gao J; Taylor EA; Sham YY
    Int J Mol Sci; 2021 Apr; 22(9):. PubMed ID: 33924837
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The Glycosyltransferases of LPS Core: A Review of Four Heptosyltransferase Enzymes in Context.
    Cote JM; Taylor EA
    Int J Mol Sci; 2017 Oct; 18(11):. PubMed ID: 29077008
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterization of the physiological substrate for lipopolysaccharide heptosyltransferases I and II.
    Gronow S; Oertelt C; Ervelä E; Zamyatina A; Kosma P; Skurnik M; Holst O
    J Endotoxin Res; 2001; 7(4):263-70. PubMed ID: 11717579
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Synthesis, kinetics and inhibition of Escherichia coli Heptosyltransferase I by monosaccharide analogues of Lipid A.
    Nkosana NK; Czyzyk DJ; Siegel ZS; Cote JM; Taylor EA
    Bioorg Med Chem Lett; 2018 Feb; 28(4):594-600. PubMed ID: 29398539
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Escherichia coli heptosyltransferase I: investigation of protein dynamics of a GT-B structural enzyme.
    Czyzyk DJ; Sawant SS; Ramirez-Mondragon CA; Hingorani MM; Taylor EA
    Biochemistry; 2013 Aug; 52(31):5158-60. PubMed ID: 23865375
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Enzymatic synthesis of lipopolysaccharide in Escherichia coli. Purification and properties of heptosyltransferase i.
    Kadrmas JL; Raetz CR
    J Biol Chem; 1998 Jan; 273(5):2799-807. PubMed ID: 9446588
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Ligand-Induced Conformational and Dynamical Changes in a GT-B Glycosyltransferase: Molecular Dynamics Simulations of Heptosyltransferase I Complexes.
    Hassan BA; Milicaj J; Ramirez-Mondragon CA; Sham YY; Taylor EA
    J Chem Inf Model; 2022 Jan; 62(2):324-339. PubMed ID: 34967618
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Comparative functional characterization in vitro of heptosyltransferase I (WaaC) and II (WaaF) from Escherichia coli.
    Gronow S; Brabetz W; Brade H
    Eur J Biochem; 2000 Nov; 267(22):6602-11. PubMed ID: 11054112
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A structural mechanism for bacterial autotransporter glycosylation by a dodecameric heptosyltransferase family.
    Yao Q; Lu Q; Wan X; Song F; Xu Y; Hu M; Zamyatina A; Liu X; Huang N; Zhu P; Shao F
    Elife; 2014 Oct; 3():. PubMed ID: 25310236
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Systematic synthesis of inhibitors of the two first enzymes of the bacterial heptose biosynthetic pathway: towards antivirulence molecules targeting lipopolysaccharide biosynthesis.
    Durka M; Tikad A; Périon R; Bosco M; Andaloussi M; Floquet S; Malacain E; Moreau F; Oxoby M; Gerusz V; Vincent SP
    Chemistry; 2011 Sep; 17(40):11305-13. PubMed ID: 21922563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Divergence of biochemical function in the HAD superfamily: D-glycero-D-manno-heptose-1,7-bisphosphate phosphatase (GmhB).
    Wang L; Huang H; Nguyen HH; Allen KN; Mariano PS; Dunaway-Mariano D
    Biochemistry; 2010 Feb; 49(6):1072-81. PubMed ID: 20050615
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A phosphoethanolamine transferase specific for the outer 3-deoxy-D-manno-octulosonic acid residue of Escherichia coli lipopolysaccharide. Identification of the eptB gene and Ca2+ hypersensitivity of an eptB deletion mutant.
    Reynolds CM; Kalb SR; Cotter RJ; Raetz CR
    J Biol Chem; 2005 Jun; 280(22):21202-11. PubMed ID: 15795227
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deletion of the heptosyltransferase genes rfaC and rfaF in Escherichia coli K-12 results in an Re-type lipopolysaccharide with a high degree of 2-aminoethanol phosphate substitution.
    Brabetz W; Müller-Loennies S; Holst O; Brade H
    Eur J Biochem; 1997 Jul; 247(2):716-24. PubMed ID: 9266718
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.