BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

112 related articles for article (PubMed ID: 35861616)

  • 1. White rot fungus mediated removal of mercury from wastewater.
    Sharma KR; Naruka A; Raja M; Sharma RK
    Water Environ Res; 2022 Jul; 94(7):e10769. PubMed ID: 35861616
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Lead, cadmium and nickel removal efficiency of white-rot fungus Phlebia brevispora.
    Sharma KR; Giri R; Sharma RK
    Lett Appl Microbiol; 2020 Dec; 71(6):637-644. PubMed ID: 32785942
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Characteristics of White-rot Fungus Phlebia brevispora TMIC33929 and Its Growth-Promoting Bacterium Enterobacter sp. TN3W-14 in the Decolorization of Dye-Contaminated Water.
    Harry-Asobara JL; Kamei I
    Appl Biochem Biotechnol; 2019 Dec; 189(4):1183-1194. PubMed ID: 31218530
    [TBL] [Abstract][Full Text] [Related]  

  • 4. White-rot fungus Phlebia floridensis ITM 12: Laccase production, oxidoreductase profile, and hydrogen-peroxide independent activity.
    Magaña-Ortiz D; López-Castillo LM; Amezquita-Novelo R
    J Basic Microbiol; 2024 Jan; 64(1):106-118. PubMed ID: 37840353
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Upregulation of MAP kinase HOG1 gene of white-rot fungus Phlebia sp. MG-60 inhibits the ethanol fermentation and mycelial growth.
    Motoda T; Chen FC; Tsuyama T; Tokumoto Y; Kijidani Y; Kamei I
    Biosci Biotechnol Biochem; 2023 Jan; 87(2):217-227. PubMed ID: 36610726
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Analysis of ethanol fermentation mechanism of ethanol producing white-rot fungus Phlebia sp. MG-60 by RNA-seq.
    Wang J; Suzuki T; Dohra H; Takigami S; Kako H; Soga A; Kamei I; Mori T; Kawagishi H; Hirai H
    BMC Genomics; 2016 Aug; 17(1):616. PubMed ID: 27515927
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Novel applications of vacuum distillation for heavy metals removal from wastewater, copper nitrate hydroxide recovery, and copper sulfide impregnated activated carbon synthesis for gaseous mercury adsorption.
    Hsu CJ; Xiao YZ; Chung A; Hsi HC
    Sci Total Environ; 2023 Jan; 855():158870. PubMed ID: 36155048
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Indirect Bacterial Effect Enhanced Less Recovery of Neonicotinoids by Improved Activities of White-Rot Fungus Phlebia brevispora.
    Harry-Asobara JL; Kamei I
    J Microbiol Biotechnol; 2019 May; 29(5):809-812. PubMed ID: 30955256
    [TBL] [Abstract][Full Text] [Related]  

  • 9. High Efficiency Mercury Sorption by Dead Biomass of
    Vega-Páez JD; Rivas RE; Dussán-Garzón J
    Materials (Basel); 2019 Apr; 12(8):. PubMed ID: 31010243
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Isolation and Identification of Mercury-Tolerant Bacteria LBA119 from Molybdenum-Lead Mining Soils and Their Removal of Hg
    Yao H; Wang H; Ji J; Tan A; Song Y; Chen Z
    Toxics; 2023 Mar; 11(3):. PubMed ID: 36977027
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Multiple heavy metal removal using an entomopathogenic fungi Beauveria bassiana.
    Gola D; Dey P; Bhattacharya A; Mishra A; Malik A; Namburath M; Ahammad SZ
    Bioresour Technol; 2016 Oct; 218():388-96. PubMed ID: 27387415
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Removal of mercury(II) ions in aqueous solution using the peel biomass of Pachira aquatica Aubl: kinetics and adsorption equilibrium studies.
    Santana AJ; dos Santos WN; Silva LO; das Virgens CF
    Environ Monit Assess; 2016 May; 188(5):293. PubMed ID: 27084802
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decay of the water reed Phragmites communis caused by the white-rot fungus Phlebia tremellosa and the influence of some environmental factors.
    Dosdall R; Preuß F; Hahn V; Schlüter R; Schauer F
    Appl Microbiol Biotechnol; 2018 Jan; 102(1):345-354. PubMed ID: 29082419
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Heavy metals in untreated/treated urban effluent and sludge from a biological wastewater treatment plant.
    Oliveira Ada S; Bocio A; Trevilato TM; Takayanagui AM; Domingo JL; Segura-Muñoz SI
    Environ Sci Pollut Res Int; 2007 Nov; 14(7):483-9. PubMed ID: 18062480
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Removal of industrial dyes and heavy metals by Beauveria bassiana: FTIR, SEM, TEM and AFM investigations with Pb(II).
    Gola D; Malik A; Namburath M; Ahammad SZ
    Environ Sci Pollut Res Int; 2018 Jul; 25(21):20486-20496. PubMed ID: 28965177
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Selective removal of Hg(II) by UiO-66-NH
    Hu Y; Wang S; Zhang L; Yang F
    Environ Sci Pollut Res Int; 2023 Jan; 30(1):2283-2297. PubMed ID: 35931848
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Conservation of Xylose Fermentability in Phlebia Species and Direct Fermentation of Xylan by Selected Fungi.
    Kamei I; Uchida K; Ardianti V
    Appl Biochem Biotechnol; 2020 Nov; 192(3):895-909. PubMed ID: 32607899
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Enhanced immobilization of mercury (II) from desulphurization wastewater by EDTA functionalized graphene oxide nanoparticles.
    Sun J; Chen H; Qi D; Wu H; Zhou C; Yang H
    Environ Technol; 2020 Apr; 41(11):1366-1379. PubMed ID: 30303465
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Mercury(II) and lead(II) ions removal using a novel thiol-rich hydrogel adsorbent; PHPAm/Fe
    Ebrahimpour E; Kazemi A
    Environ Sci Pollut Res Int; 2023 Jan; 30(5):13605-13623. PubMed ID: 36136188
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Genomewide analysis of polysaccharides degrading enzymes in 11 white- and brown-rot Polyporales provides insight into mechanisms of wood decay.
    Hori C; Gaskell J; Igarashi K; Samejima M; Hibbett D; Henrissat B; Cullen D
    Mycologia; 2013; 105(6):1412-27. PubMed ID: 23935027
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.