These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

279 related articles for article (PubMed ID: 35862514)

  • 21. Engineering and design in the bioelectrochemistry of metalloproteins.
    Gilardi G; Fantuzzi A; Sadeghi SJ
    Curr Opin Struct Biol; 2001 Aug; 11(4):491-9. PubMed ID: 11495744
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Genome-scale annotation of protein binding sites via language model and geometric deep learning.
    Yuan Q; Tian C; Yang Y
    Elife; 2024 Apr; 13():. PubMed ID: 38630609
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Protein Engineering by Combined Computational and In Vitro Evolution Approaches.
    Rosenfeld L; Heyne M; Shifman JM; Papo N
    Trends Biochem Sci; 2016 May; 41(5):421-433. PubMed ID: 27061494
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Rational Design of Artificial Metalloproteins and Metalloenzymes with Metal Clusters.
    Lin YW
    Molecules; 2019 Jul; 24(15):. PubMed ID: 31362341
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improving de novo protein binder design with deep learning.
    Bennett NR; Coventry B; Goreshnik I; Huang B; Allen A; Vafeados D; Peng YP; Dauparas J; Baek M; Stewart L; DiMaio F; De Munck S; Savvides SN; Baker D
    Nat Commun; 2023 May; 14(1):2625. PubMed ID: 37149653
    [TBL] [Abstract][Full Text] [Related]  

  • 26. A suite of de novo c-type cytochromes for functional oxidoreductase engineering.
    Watkins DW; Armstrong CT; Beesley JL; Marsh JE; Jenkins JMX; Sessions RB; Mann S; Ross Anderson JL
    Biochim Biophys Acta; 2016 May; 1857(5):493-502. PubMed ID: 26556173
    [TBL] [Abstract][Full Text] [Related]  

  • 27. De novo protein design by inversion of the AlphaFold structure prediction network.
    Goverde CA; Wolf B; Khakzad H; Rosset S; Correia BE
    Protein Sci; 2023 Jun; 32(6):e4653. PubMed ID: 37165539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence optimization and designability of enzyme active sites.
    Chakrabarti R; Klibanov AM; Friesner RA
    Proc Natl Acad Sci U S A; 2005 Aug; 102(34):12035-40. PubMed ID: 16103370
    [TBL] [Abstract][Full Text] [Related]  

  • 29. SOFB is a comprehensive ensemble deep learning approach for elucidating and characterizing protein-nucleic-acid-binding residues.
    Zhang B; Hou Z; Yang Y; Wong KC; Zhu H; Li X
    Commun Biol; 2024 Jun; 7(1):679. PubMed ID: 38830995
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Design and evolution of new catalytic activity with an existing protein scaffold.
    Park HS; Nam SH; Lee JK; Yoon CN; Mannervik B; Benkovic SJ; Kim HS
    Science; 2006 Jan; 311(5760):535-8. PubMed ID: 16439663
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Computational protein design of ligand binding and catalysis.
    Feldmeier K; Höcker B
    Curr Opin Chem Biol; 2013 Dec; 17(6):929-33. PubMed ID: 24466576
    [TBL] [Abstract][Full Text] [Related]  

  • 32. DeepBSRPred: deep learning-based binding site residue prediction for proteins.
    Nikam R; Yugandhar K; Gromiha MM
    Amino Acids; 2023 Oct; 55(10):1305-1316. PubMed ID: 36574037
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Resolving protein structure-function-binding site relationships from a binding site similarity network perspective.
    Mudgal R; Srinivasan N; Chandra N
    Proteins; 2017 Jul; 85(7):1319-1335. PubMed ID: 28342236
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineering metal-binding sites in proteins.
    Lu Y; Valentine JS
    Curr Opin Struct Biol; 1997 Aug; 7(4):495-500. PubMed ID: 9266170
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Templates in protein de novo design.
    Tuchscherer G; Mutter M
    J Biotechnol; 1995 Jul; 41(2-3):197-210. PubMed ID: 7654350
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Direct prediction of profiles of sequences compatible with a protein structure by neural networks with fragment-based local and energy-based nonlocal profiles.
    Li Z; Yang Y; Faraggi E; Zhan J; Zhou Y
    Proteins; 2014 Oct; 82(10):2565-73. PubMed ID: 24898915
    [TBL] [Abstract][Full Text] [Related]  

  • 37. End-to-End Deep Learning Model to Predict and Design Secondary Structure Content of Structural Proteins.
    Yu CH; Chen W; Chiang YH; Guo K; Martin Moldes Z; Kaplan DL; Buehler MJ
    ACS Biomater Sci Eng; 2022 Mar; 8(3):1156-1165. PubMed ID: 35129957
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Fast, accurate ranking of engineered proteins by target-binding propensity using structure modeling.
    Ding X; Chen X; Sullivan EE; Shay TF; Gradinaru V
    Mol Ther; 2024 Jun; 32(6):1687-1700. PubMed ID: 38582966
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Protein secondary structure prediction with SPARROW.
    Bettella F; Rasinski D; Knapp EW
    J Chem Inf Model; 2012 Feb; 52(2):545-56. PubMed ID: 22224407
    [TBL] [Abstract][Full Text] [Related]  

  • 40. New strategies in protein design.
    Desjarlais JR; Handel TM
    Curr Opin Biotechnol; 1995 Aug; 6(4):460-6. PubMed ID: 7579657
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 14.