These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

123 related articles for article (PubMed ID: 35862517)

  • 1. High ambipolar mobility in cubic boron arsenide revealed by transient reflectivity microscopy.
    Yue S; Tian F; Sui X; Mohebinia M; Wu X; Tong T; Wang Z; Wu B; Zhang Q; Ren Z; Bao J; Liu X
    Science; 2022 Jul; 377(6604):433-436. PubMed ID: 35862517
    [TBL] [Abstract][Full Text] [Related]  

  • 2. High ambipolar mobility in cubic boron arsenide.
    Shin J; Gamage GA; Ding Z; Chen K; Tian F; Qian X; Zhou J; Lee H; Zhou J; Shi L; Nguyen T; Han F; Li M; Broido D; Schmidt A; Ren Z; Chen G
    Science; 2022 Jul; 377(6604):437-440. PubMed ID: 35862526
    [TBL] [Abstract][Full Text] [Related]  

  • 3. High carrier mobility in single-crystal plasma-deposited diamond.
    Isberg J; Hammersberg J; Johansson E; Wikström T; Twitchen DJ; Whitehead AJ; Coe SE; Scarsbrook GA
    Science; 2002 Sep; 297(5587):1670-2. PubMed ID: 12215638
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Theoretical Prediction of Carrier Mobility in Few-Layer BC2N.
    Xie J; Zhang ZY; Yang DZ; Xue DS; Si MS
    J Phys Chem Lett; 2014 Dec; 5(23):4073-7. PubMed ID: 26278934
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ambipolar pentacene field-effect transistors and inverters.
    Schon JH; Berg S; Kloc C; Batlogg B
    Science; 2000 Feb; 287(5455):1022-3. PubMed ID: 10669410
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High thermal conductivity in cubic boron arsenide crystals.
    Li S; Zheng Q; Lv Y; Liu X; Wang X; Huang PY; Cahill DG; Lv B
    Science; 2018 Aug; 361(6402):579-581. PubMed ID: 29976796
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Experimental observation of high thermal conductivity in boron arsenide.
    Kang JS; Li M; Wu H; Nguyen H; Hu Y
    Science; 2018 Aug; 361(6402):575-578. PubMed ID: 29976798
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ultrahigh thermal conductivity in isotope-enriched cubic boron nitride.
    Chen K; Song B; Ravichandran NK; Zheng Q; Chen X; Lee H; Sun H; Li S; Udalamatta Gamage GAG; Tian F; Ding Z; Song Q; Rai A; Wu H; Koirala P; Schmidt AJ; Watanabe K; Lv B; Ren Z; Shi L; Cahill DG; Taniguchi T; Broido D; Chen G
    Science; 2020 Jan; 367(6477):555-559. PubMed ID: 31919128
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Orchestrating the impact of antisites and vacancy defects on the elastic and optoelectronic properties of boron arsenide.
    Hussain A; Mian SA; Ahmed E; Jang J
    J Mol Model; 2023 Dec; 29(12):393. PubMed ID: 38041727
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Flexible thermal interface based on self-assembled boron arsenide for high-performance thermal management.
    Cui Y; Qin Z; Wu H; Li M; Hu Y
    Nat Commun; 2021 Feb; 12(1):1284. PubMed ID: 33627644
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Activated Lone-Pair Electrons Lead to Low Lattice Thermal Conductivity: A Case Study of Boron Arsenide.
    Qin G; Xu J; Wang H; Qin Z; Hu M
    J Phys Chem Lett; 2023 Jan; 14(1):139-147. PubMed ID: 36577014
    [TBL] [Abstract][Full Text] [Related]  

  • 12. High Thermal Conductivity of Wurtzite Boron Arsenide Predicted by Including Four-Phonon Scattering with Machine Learning Potential.
    Liu Z; Yang X; Zhang B; Li W
    ACS Appl Mater Interfaces; 2021 Nov; 13(45):53409-53415. PubMed ID: 34415723
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Finite-momentum excitons and the role of electron-phonon couplings in the electronic and phonon transport properties of boron arsenide.
    Mei H; Xia Y; Zhang Y; Wu Y; Chen Y; Ma C; Kong M; Peng L; Zhu H; Zhang H
    Phys Chem Chem Phys; 2022 Apr; 24(16):9384-9393. PubMed ID: 35383793
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Gallium arsenide transistors: realization through a molecularly designed insulator.
    Jenkins PP; Macinnes AN; Tabib-Azar M; Barron AR
    Science; 1994 Mar; 263(5154):1751-3. PubMed ID: 17795383
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Suppression of metallic conductivity of single-walled carbon nanotubes by cycloaddition reactions.
    Kanungo M; Lu H; Malliaras GG; Blanchet GB
    Science; 2009 Jan; 323(5911):234-7. PubMed ID: 19131624
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electric field effect in atomically thin carbon films.
    Novoselov KS; Geim AK; Morozov SV; Jiang D; Zhang Y; Dubonos SV; Grigorieva IV; Firsov AA
    Science; 2004 Oct; 306(5696):666-9. PubMed ID: 15499015
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pressure-Dependent Behavior of Defect-Modulated Band Structure in Boron Arsenide.
    Meng X; Singh A; Juneja R; Zhang Y; Tian F; Ren Z; Singh AK; Shi L; Lin JF; Wang Y
    Adv Mater; 2020 Nov; 32(45):e2001942. PubMed ID: 33015896
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Electrical Transport Properties of Undoped CVD Diamond Films.
    Pan LS; Pianetta P; Kania DR; Han S; Landen OL; Ager JW; Landstrass M
    Science; 1992 Feb; 255(5046):830-3. PubMed ID: 17756429
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Thin-film transistor fabricated in single-crystalline transparent oxide semiconductor.
    Nomura K; Ohta H; Ueda K; Kamiya T; Hirano M; Hosono H
    Science; 2003 May; 300(5623):1269-72. PubMed ID: 12764192
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthesis and Ultrafast Carrier Dynamics of Single-Crystal Two-Dimensional CuInSe2 Nanosheets.
    Tao X; Mafi E; Gu Y
    J Phys Chem Lett; 2014 Aug; 5(16):2857-62. PubMed ID: 26278089
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.