These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
119 related articles for article (PubMed ID: 35862517)
21. High thermal conductivity driven by the unusual phonon relaxation time platform in 2D monolayer boron arsenide. Hu Y; Li D; Yin Y; Li S; Zhou H; Zhang G RSC Adv; 2020 Jun; 10(42):25305-25310. PubMed ID: 35517492 [TBL] [Abstract][Full Text] [Related]
22. Electronic and valleytronic properties of crystalline boron-arsenide tuned by strain and disorder. Craco L; Carara SS; da Silva Barboza E; Milošević MV; Pereira TAS RSC Adv; 2023 Jun; 13(26):17907-17913. PubMed ID: 37323444 [No Abstract] [Full Text] [Related]
23. High Thermal Conductivity in Boron Arsenide: From Prediction to Reality. Tian F; Ren Z Angew Chem Int Ed Engl; 2019 Apr; 58(18):5824-5831. PubMed ID: 30523650 [TBL] [Abstract][Full Text] [Related]
24. Direct and indirect optical absorptions of cubic BAs and BSb. Ge Y; Wan W; Guo X; Liu Y Opt Express; 2020 Jan; 28(1):238-248. PubMed ID: 32118954 [TBL] [Abstract][Full Text] [Related]
25. High-Mobility Transport Anisotropy in Few-Layer MoO Zhang WB; Qu Q; Lai K ACS Appl Mater Interfaces; 2017 Jan; 9(2):1702-1709. PubMed ID: 27977924 [TBL] [Abstract][Full Text] [Related]
26. Modulated thermal conductivity of 2D hexagonal boron arsenide: a strain engineering study. Raeisi M; Ahmadi S; Rajabpour A Nanoscale; 2019 Nov; 11(45):21799-21810. PubMed ID: 31691704 [TBL] [Abstract][Full Text] [Related]
27. Unusual high thermal conductivity in boron arsenide bulk crystals. Tian F; Song B; Chen X; Ravichandran NK; Lv Y; Chen K; Sullivan S; Kim J; Zhou Y; Liu TH; Goni M; Ding Z; Sun J; Udalamatta Gamage GAG; Sun H; Ziyaee H; Huyan S; Deng L; Zhou J; Schmidt AJ; Chen S; Chu CW; Huang PY; Broido D; Shi L; Chen G; Ren Z Science; 2018 Aug; 361(6402):582-585. PubMed ID: 29976797 [TBL] [Abstract][Full Text] [Related]
28. Idealizing Tauc Plot for Accurate Bandgap Determination of Semiconductor with Ultraviolet-Visible Spectroscopy: A Case Study for Cubic Boron Arsenide. Zhong H; Pan F; Yue S; Qin C; Hadjiev V; Tian F; Liu X; Lin F; Wang Z; Bao J J Phys Chem Lett; 2023 Jul; 14(29):6702-6708. PubMed ID: 37467492 [TBL] [Abstract][Full Text] [Related]
29. First-principles determination of ultrahigh thermal conductivity of boron arsenide: a competitor for diamond? Lindsay L; Broido DA; Reinecke TL Phys Rev Lett; 2013 Jul; 111(2):025901. PubMed ID: 23889420 [TBL] [Abstract][Full Text] [Related]
30. Organic-inorganic hybrid materials as semiconducting channels in thin-film field-effect transistors. Kagan CR; Mitzi DB; Dimitrakopoulos CD Science; 1999 Oct; 286(5441):945-7. PubMed ID: 10542146 [TBL] [Abstract][Full Text] [Related]
31. Non-monotonic pressure dependence of the thermal conductivity of boron arsenide. Ravichandran NK; Broido D Nat Commun; 2019 Feb; 10(1):827. PubMed ID: 30783095 [TBL] [Abstract][Full Text] [Related]
32. Polycrystalline CVD Diamond Films with High Electrical Mobility. Plano MA; Landstrass MI; Pan LS; Han S; Kania DR; McWilliams S; Ager JW Science; 1993 May; 260(5112):1310-2. PubMed ID: 17755424 [TBL] [Abstract][Full Text] [Related]
33. Toward printed integrated circuits based on unipolar or ambipolar polymer semiconductors. Baeg KJ; Caironi M; Noh YY Adv Mater; 2013 Aug; 25(31):4210-44. PubMed ID: 23761043 [TBL] [Abstract][Full Text] [Related]
34. Semiconducting α'-boron sheet with high mobility and low all-boron contact resistance: a first-principles study. Zhang JJ; Altalhi T; Yang JH; Yakobson BI Nanoscale; 2021 May; 13(18):8474-8480. PubMed ID: 33984112 [TBL] [Abstract][Full Text] [Related]