BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

159 related articles for article (PubMed ID: 35862554)

  • 1. Prediction of acute toxicity to
    Wu X; Guo J; Dang G; Sui X; Zhang Q
    SAR QSAR Environ Res; 2022 Aug; 33(8):583-600. PubMed ID: 35862554
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Development of models to predict fish early-life stage toxicity from acute Daphnia magna toxicity
    Furuhama A; Hayashi TI; Yamamoto H
    SAR QSAR Environ Res; 2018 Sep; 29(9):725-742. PubMed ID: 30182748
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Development of in silico models for predicting LSER molecular parameters and for acute toxicity prediction to fathead minnow (Pimephales promelas).
    Lyakurwa FS; Yang X; Li X; Qiao X; Chen J
    Chemosphere; 2014 Aug; 108():17-25. PubMed ID: 24875907
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The Influence of Structural Patterns on Acute Aquatic Toxicity of Organic Compounds.
    Tinkov O; Polishchuk P; Matveieva M; Grigorev V; Grigoreva L; Porozov Y
    Mol Inform; 2021 Sep; 40(9):e2000209. PubMed ID: 33029954
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas).
    Cassotti M; Ballabio D; Todeschini R; Consonni V
    SAR QSAR Environ Res; 2015; 26(3):217-43. PubMed ID: 25780951
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Toxicity of contaminants of emerging concern to Dugesia japonica: QSTR modeling and toxicity relationship with Daphnia magna.
    Önlü S; Saçan MT
    J Hazard Mater; 2018 Jun; 351():20-28. PubMed ID: 29506002
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Development and validation of theoretical linear solvation energy relationship models for toxicity prediction to fathead minnow (Pimephales promelas).
    Lyakurwa F; Yang X; Li X; Qiao X; Chen J
    Chemosphere; 2014 Feb; 96():188-94. PubMed ID: 24216263
    [TBL] [Abstract][Full Text] [Related]  

  • 8. MOAtox: A comprehensive mode of action and acute aquatic toxicity database for predictive model development.
    Barron MG; Lilavois CR; Martin TM
    Aquat Toxicol; 2015 Apr; 161():102-7. PubMed ID: 25700118
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Validation of a QSAR model for acute toxicity.
    Pavan M; Netzeva TI; Worth AP
    SAR QSAR Environ Res; 2006 Apr; 17(2):147-71. PubMed ID: 16644555
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR study of the acute toxicity to fathead minnow based on a large dataset.
    Wu X; Zhang Q; Hu J
    SAR QSAR Environ Res; 2016; 27(2):147-64. PubMed ID: 26911563
    [TBL] [Abstract][Full Text] [Related]  

  • 11. QSAR studies of comparative toxicity in aquatic organisms.
    Cronin MT; Dearden JC; Dobbs AJ
    Sci Total Environ; 1991 Dec; 109-110():431-9. PubMed ID: 1815364
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Quantitative structure-activity relationship modeling of the toxicity of organothiophosphate pesticides to Daphnia magna and Cyprinus carpio.
    Zvinavashe E; Du T; Griff T; van den Berg HH; Soffers AE; Vervoort J; Murk AJ; Rietjens IM
    Chemosphere; 2009 Jun; 75(11):1531-8. PubMed ID: 19376559
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Modeling and insights into the structural basis of chemical acute aquatic toxicity.
    Zhang R; Guo H; Hua Y; Cui X; Shi Y; Li X
    Ecotoxicol Environ Saf; 2022 Sep; 242():113940. PubMed ID: 35999760
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Consensus QSAR modeling of toxicity of pharmaceuticals to different aquatic organisms: Ranking and prioritization of the DrugBank database compounds.
    Khan K; Benfenati E; Roy K
    Ecotoxicol Environ Saf; 2019 Jan; 168():287-297. PubMed ID: 30390527
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Aminomethylphosphonic acid has low chronic toxicity to Daphnia magna and Pimephales promelas.
    Levine SL; von Mérey G; Minderhout T; Manson P; Sutton P
    Environ Toxicol Chem; 2015 Jun; 34(6):1382-9. PubMed ID: 25690938
    [TBL] [Abstract][Full Text] [Related]  

  • 16. QSAR model for predicting the toxicity of organic compounds to fathead minnow.
    Jia Q; Zhao Y; Yan F; Wang Q
    Environ Sci Pollut Res Int; 2018 Dec; 25(35):35420-35428. PubMed ID: 30350137
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Probabilistic ecological hazard assessment of parabens using Daphnia magna and Pimephales promelas.
    Dobbins LL; Usenko S; Brain RA; Brooks BW
    Environ Toxicol Chem; 2009 Dec; 28(12):2744-53. PubMed ID: 19653701
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of acute toxicity quantitative structure activity relationships (QSAR) and their use in linear alkylbenzene sulfonate species sensitivity distributions.
    Belanger SE; Brill JL; Rawlings JM; Price BB
    Chemosphere; 2016 Jul; 155():18-27. PubMed ID: 27105149
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Is the Factor-of-2 Rule Broadly Applicable for Evaluating the Prediction Accuracy of Metal-Toxicity Models?
    Meyer JS; Traudt EM; Ranville JF
    Bull Environ Contam Toxicol; 2018 Jan; 100(1):64-68. PubMed ID: 29270647
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Daphnia and fish toxicity of (benzo)triazoles: validated QSAR models, and interspecies quantitative activity-activity modelling.
    Cassani S; Kovarich S; Papa E; Roy PP; van der Wal L; Gramatica P
    J Hazard Mater; 2013 Aug; 258-259():50-60. PubMed ID: 23702385
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.