These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35862637)
1. Reorganization Energies for Interfacial Electron Transfer across Phenylene Ethynylene Rigid-Rod Bridges. Heidari M; Loague Q; Bangle RE; Galoppini E; Meyer GJ ACS Appl Mater Interfaces; 2022 Aug; 14(30):35205-35214. PubMed ID: 35862637 [TBL] [Abstract][Full Text] [Related]
2. Electron Transfer Reorganization Energies in the Electrode-Electrolyte Double Layer. Bangle RE; Schneider J; Piechota EJ; Troian-Gautier L; Meyer GJ J Am Chem Soc; 2020 Jan; 142(2):674-679. PubMed ID: 31859498 [TBL] [Abstract][Full Text] [Related]
3. Impact of Molecular Orientation on Lateral and Interfacial Electron Transfer at Oxide Interfaces. Loague Q; Keller ND; Müller AV; Aramburu-Trošelj BM; Bangle RE; Schneider J; Sampaio RN; Polo AS; Meyer GJ ACS Appl Mater Interfaces; 2023 Jul; 15(28):34249-34262. PubMed ID: 37417666 [TBL] [Abstract][Full Text] [Related]
4. Determination of Proton-Coupled Electron Transfer Reorganization Energies with Application to Water Oxidation Catalysts. Schneider J; Bangle RE; Swords WB; Troian-Gautier L; Meyer GJ J Am Chem Soc; 2019 Jun; 141(25):9758-9763. PubMed ID: 31194527 [TBL] [Abstract][Full Text] [Related]
5. Distance dependent electron transfer at TiO2 interfaces sensitized with phenylene ethynylene bridged Ru(II)-isothiocyanate compounds. Johansson PG; Kopecky A; Galoppini E; Meyer GJ J Am Chem Soc; 2013 Jun; 135(22):8331-41. PubMed ID: 23692179 [TBL] [Abstract][Full Text] [Related]
6. Solvent influence on non-adiabatic interfacial electron transfer at conductive oxide electrolyte interfaces. Aramburu-Trošelj BM; Bangle RE; Meyer GJ J Chem Phys; 2020 Oct; 153(13):134702. PubMed ID: 33032431 [TBL] [Abstract][Full Text] [Related]
7. Driving force dependent, photoinduced electron transfer at degenerately doped, optically transparent semiconductor nanoparticle interfaces. Farnum BH; Morseth ZA; Brennaman MK; Papanikolas JM; Meyer TJ J Am Chem Soc; 2014 Nov; 136(45):15869-72. PubMed ID: 25330285 [TBL] [Abstract][Full Text] [Related]
8. Ligand structure, conformational dynamics, and excited-state electron delocalization for control of photoinduced electron transfer rates in synthetic donor-bridge-acceptor systems. Meylemans HA; Lei CF; Damrauer NH Inorg Chem; 2008 May; 47(10):4060-76. PubMed ID: 18407628 [TBL] [Abstract][Full Text] [Related]
9. Reorganization Energies for Interfacial Proton-Coupled Electron Transfer to a Water Oxidation Catalyst. Kessinger M; Soudackov AV; Schneider J; Bangle RE; Hammes-Schiffer S; Meyer GJ J Am Chem Soc; 2022 Nov; 144(44):20514-20524. PubMed ID: 36314899 [TBL] [Abstract][Full Text] [Related]
10. Application of Degenerately Doped Metal Oxides in the Study of Photoinduced Interfacial Electron Transfer. Farnum BH; Morseth ZA; Brennaman MK; Papanikolas JM; Meyer TJ J Phys Chem B; 2015 Jun; 119(24):7698-711. PubMed ID: 25668488 [TBL] [Abstract][Full Text] [Related]
11. Electron Transfer across o-Phenylene Wires. Malzkuhn S; Guo X; Häussinger D; Wenger OS J Phys Chem A; 2019 Jan; 123(1):96-102. PubMed ID: 30592217 [TBL] [Abstract][Full Text] [Related]
12. Distinguishing between Dexter and rapid sequential electron transfer in covalently linked donor-acceptor assemblies. Soler M; McCusker JK J Am Chem Soc; 2008 Apr; 130(14):4708-24. PubMed ID: 18341336 [TBL] [Abstract][Full Text] [Related]
13. Measurement of the dependence of interfacial charge-transfer rate constants on the reorganization energy of redox species at n-ZnO/H2O interfaces. Hamann TW; Gstrein F; Brunschwig BS; Lewis NS J Am Chem Soc; 2005 Oct; 127(40):13949-54. PubMed ID: 16201817 [TBL] [Abstract][Full Text] [Related]
14. Electron transfer across modular oligo-p-phenylene bridges in Ru(bpy)2(bpy-ph(n)-DQ)4+ (n = 1-5) dyads. Unusual effects of bridge elongation. Indelli MT; Orlandi M; Chiorboli C; Ravaglia M; Scandola F; Lafolet F; Welter S; De Cola L J Phys Chem A; 2012 Jan; 116(1):119-31. PubMed ID: 22103466 [TBL] [Abstract][Full Text] [Related]
15. Dependence of reaction rates for bidirectional PCET on the electron donor-electron acceptor distance in phenol-Ru(2,2'-bipyridine)₃²⁺ dyads. Chen J; Kuss-Petermann M; Wenger OS J Phys Chem B; 2015 Feb; 119(6):2263-73. PubMed ID: 25078952 [TBL] [Abstract][Full Text] [Related]
16. Enhancement of metal-metal coupling at a considerable distance by using 4-pyridinealdazine as a bridging ligand in polynuclear complexes of rhenium and ruthenium. Cattaneo M; Fagalde F; Katz NE; Leiva AM; Schmehl R Inorg Chem; 2006 Jan; 45(1):127-36. PubMed ID: 16390048 [TBL] [Abstract][Full Text] [Related]
17. Photoinduced electron transfer across oligo-p-phenylene bridges. Distance and conformational effects in Ru(II)-Rh(III) dyads. Indelli MT; Chiorboli C; Flamigni L; De Cola L; Scandola F Inorg Chem; 2007 Jul; 46(14):5630-41. PubMed ID: 17564435 [TBL] [Abstract][Full Text] [Related]
18. Photoinduced Charge Separation within Metallo-supramolecular Wires Built around a [Ru(bpy)3](2+)-Bisterpyridine Linear Entity. Farran R; Jouvenot D; Gennaro B; Loiseau F; Chauvin J; Deronzier A ACS Appl Mater Interfaces; 2016 Jun; 8(25):16136-46. PubMed ID: 27280969 [TBL] [Abstract][Full Text] [Related]
19. Calculated optoelectronic properties of ruthenium tris-bipyridine dyes containing oligophenyleneethynylene rigid rod linkers in different chemical environments. Lundqvist MJ; Galoppini E; Meyer GJ; Persson P J Phys Chem A; 2007 Mar; 111(8):1487-97. PubMed ID: 17279731 [TBL] [Abstract][Full Text] [Related]
20. Synthesis, spectroscopy, and electrochemical studies of binuclear tris-bipyridine ruthenium(II) complexes with oligothiophene bridges. Pappenfus TM; Mann KR Inorg Chem; 2001 Nov; 40(24):6301-7. PubMed ID: 11703134 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]