BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35863113)

  • 1. Coupled Interfacial and Bulk Kinetics Govern the Timescales of Multiphase Ozonolysis Reactions.
    Willis MD; Wilson KR
    J Phys Chem A; 2022 Aug; 126(30):4991-5010. PubMed ID: 35863113
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A Kinetic Model for Predicting Trace Gas Uptake and Reaction.
    Wilson KR; Prophet AM; Willis MD
    J Phys Chem A; 2022 Oct; 126(40):7291-7308. PubMed ID: 36170058
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Influence of particle viscosity on mass transfer and heterogeneous ozonolysis kinetics in aqueous-sucrose-maleic acid aerosol.
    Marshall FH; Berkemeier T; Shiraiwa M; Nandy L; Ohm PB; Dutcher CS; Reid JP
    Phys Chem Chem Phys; 2018 Jun; 20(22):15560-15573. PubMed ID: 29808874
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Multiphase Ozonolysis of Aqueous α-Terpineol.
    Leviss DH; Van Ry DA; Hinrichs RZ
    Environ Sci Technol; 2016 Nov; 50(21):11698-11705. PubMed ID: 27680201
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Strong Acids or Bases Displaced by Weak Acids or Bases in Aerosols: Reactions Driven by the Continuous Partitioning of Volatile Products into the Gas Phase.
    Chen Z; Liu P; Liu Y; Zhang YH
    Acc Chem Res; 2021 Oct; 54(19):3667-3678. PubMed ID: 34569236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Online headspace monitoring of volatile organic compounds using proton transfer reaction-mass spectrometry: Application to the multiphase atmospheric fate of 2,4-hexadienedial.
    Brun N; González-Sánchez JM; Ravier S; Temime-Roussel B; Brigante M; Mailhot G; Clément JL; Monod A
    Talanta; 2024 Aug; 276():126176. PubMed ID: 38810352
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Multiphase chemical kinetics of OH radical uptake by molecular organic markers of biomass burning aerosols: humidity and temperature dependence, surface reaction, and bulk diffusion.
    Arangio AM; Slade JH; Berkemeier T; Pöschl U; Knopf DA; Shiraiwa M
    J Phys Chem A; 2015 May; 119(19):4533-44. PubMed ID: 25686209
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Competition between organics and bromide at the aqueous solution-air interface as seen from ozone uptake kinetics and X-ray photoelectron spectroscopy.
    Lee MT; Brown MA; Kato S; Kleibert A; Türler A; Ammann M
    J Phys Chem A; 2015 May; 119(19):4600-8. PubMed ID: 25530167
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Interfacial vs Bulk Ozonolysis of Nerolidol.
    Qiu J; Ishizuka S; Tonokura K; Enami S
    Environ Sci Technol; 2019 May; 53(10):5750-5757. PubMed ID: 31017766
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Mulitphase Atmospheric Chemistry in Liquid Water: Impacts and Controllability of Organic Aerosol.
    Carlton AG; Christiansen AE; Flesch MM; Hennigan CJ; Sareen N
    Acc Chem Res; 2020 Sep; 53(9):1715-1723. PubMed ID: 32803954
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Oxidation of biogenic and water-soluble compounds in aqueous and organic aerosol droplets by ozone: a kinetic and product analysis approach using laser Raman tweezers.
    King MD; Thompson KC; Ward AD; Pfrang C; Hughes BR
    Faraday Discuss; 2008; 137():173-92; discussion 193-204. PubMed ID: 18214104
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New Multiphase Chemical Processes Influencing Atmospheric Aerosols, Air Quality, and Climate in the Anthropocene.
    Su H; Cheng Y; Pöschl U
    Acc Chem Res; 2020 Oct; 53(10):2034-2043. PubMed ID: 32927946
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Analysis of chemical kinetics at the gas-aqueous interface for submicron aerosols.
    Remorov RG; George C
    Phys Chem Chem Phys; 2006 Nov; 8(42):4897-901. PubMed ID: 17066179
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Comparing the mechanism of water condensation and evaporation in glassy aerosol.
    Bones DL; Reid JP; Lienhard DM; Krieger UK
    Proc Natl Acad Sci U S A; 2012 Jul; 109(29):11613-8. PubMed ID: 22753520
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Ionic Strength Enhances the Multiphase Oxidation Rate of Sulfur Dioxide by Ozone in Aqueous Aerosols: Implications for Sulfate Production in the Marine Atmosphere.
    Yu C; Liu T; Ge D; Nie W; Chi X; Ding A
    Environ Sci Technol; 2023 Apr; 57(16):6609-6615. PubMed ID: 37040454
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Iodide oxidation by ozone at the surface of aqueous microdroplets.
    Prophet AM; Polley K; Van Berkel GJ; Limmer DT; Wilson KR
    Chem Sci; 2024 Jan; 15(2):736-756. PubMed ID: 38179528
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The oxidation of oleate in submicron aqueous salt aerosols: evidence of a surface process.
    McNeill VF; Wolfe GM; Thornton JA
    J Phys Chem A; 2007 Feb; 111(6):1073-83. PubMed ID: 17243657
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atmospheric fate of typical liquid crystal monomers in the tropospheric gas, liquid, and granular phases.
    Huo Y; An Z; Li M; Jiang J; Zhou Y; Xie J; Zhang J; He M
    J Environ Sci (China); 2024 Feb; 136():348-360. PubMed ID: 37923444
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Multiphase chemical kinetics of NO3 radicals reacting with organic aerosol components from biomass burning.
    Shiraiwa M; Pöschl U; Knopf DA
    Environ Sci Technol; 2012 Jun; 46(12):6630-6. PubMed ID: 22594762
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Time-Sensitive Aspects of Mars Sample Return (MSR) Science.
    Tosca NJ; Agee CB; Cockell CS; Glavin DP; Hutzler A; Marty B; McCubbin FM; Regberg AB; Velbel MA; Kminek G; Meyer MA; Beaty DW; Carrier BL; Haltigin T; Hays LE; Busemann H; Cavalazzi B; Debaille V; Grady MM; Hauber E; Pratt LM; Smith AL; Smith CL; Summons RE; Swindle TD; Tait KT; Udry A; Usui T; Wadhwa M; Westall F; Zorzano MP
    Astrobiology; 2022 Jun; 22(S1):S81-S111. PubMed ID: 34904889
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.