These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

172 related articles for article (PubMed ID: 35863123)

  • 1. Spatial feature and resolution maximization GAN for bone suppression in chest radiographs.
    Rani G; Misra A; Dhaka VS; Zumpano E; Vocaturo E
    Comput Methods Programs Biomed; 2022 Sep; 224():107024. PubMed ID: 35863123
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dilated conditional GAN for bone suppression in chest radiographs with enforced semantic features.
    Zhou Z; Zhou L; Shen K
    Med Phys; 2020 Dec; 47(12):6207-6215. PubMed ID: 32621786
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Low-dose sinogram restoration enabled by conditional GAN with cross-domain regularization in SPECT imaging.
    Li S; Peng L; Li F; Liang Z
    Math Biosci Eng; 2023 Mar; 20(6):9728-9758. PubMed ID: 37322909
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pseudo-CT generation from multi-parametric MRI using a novel multi-channel multi-path conditional generative adversarial network for nasopharyngeal carcinoma patients.
    Tie X; Lam SK; Zhang Y; Lee KH; Au KH; Cai J
    Med Phys; 2020 Apr; 47(4):1750-1762. PubMed ID: 32012292
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Ultrasound image denoising using generative adversarial networks with residual dense connectivity and weighted joint loss.
    Zhang L; Zhang J
    PeerJ Comput Sci; 2022; 8():e873. PubMed ID: 35494868
    [TBL] [Abstract][Full Text] [Related]  

  • 6. High-fidelity fast volumetric brain MRI using synergistic wave-controlled aliasing in parallel imaging and a hybrid denoising generative adversarial network (HDnGAN).
    Li Z; Tian Q; Ngamsombat C; Cartmell S; Conklin J; Filho ALMG; Lo WC; Wang G; Ying K; Setsompop K; Fan Q; Bilgic B; Cauley S; Huang SY
    Med Phys; 2022 Feb; 49(2):1000-1014. PubMed ID: 34961944
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Enhancing classification of cells procured from bone marrow aspirate smears using generative adversarial networks and sequential convolutional neural network.
    Hazra D; Byun YC; Kim WJ
    Comput Methods Programs Biomed; 2022 Sep; 224():107019. PubMed ID: 35878483
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A Generative Adversarial Network technique for high-quality super-resolution reconstruction of cardiac magnetic resonance images.
    Zhao M; Wei Y; Wong KKL
    Magn Reson Imaging; 2022 Jan; 85():153-160. PubMed ID: 34699953
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Lesion-aware generative adversarial networks for color fundus image to fundus fluorescein angiography translation.
    Huang K; Li M; Yu J; Miao J; Hu Z; Yuan S; Chen Q
    Comput Methods Programs Biomed; 2023 Feb; 229():107306. PubMed ID: 36580822
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Refinement of image quality in panoramic radiography using a generative adversarial network.
    Kim HS; Ha EG; Lee A; Choi YJ; Jeon KJ; Han SS; Lee C
    Dentomaxillofac Radiol; 2023 Jul; 52(5):20230007. PubMed ID: 37129509
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Weakly supervised pneumonia localization in chest X-rays using generative adversarial networks.
    Keshavamurthy KN; Eickhoff C; Juluru K
    Med Phys; 2021 Nov; 48(11):7154-7171. PubMed ID: 34459001
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Retinal image synthesis from multiple-landmarks input with generative adversarial networks.
    Yu Z; Xiang Q; Meng J; Kou C; Ren Q; Lu Y
    Biomed Eng Online; 2019 May; 18(1):62. PubMed ID: 31113438
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A material decomposition method for dual-energy CT via dual interactive Wasserstein generative adversarial networks.
    Shi Z; Li H; Cao Q; Wang Z; Cheng M
    Med Phys; 2021 Jun; 48(6):2891-2905. PubMed ID: 33704786
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Improving CBCT quality to CT level using deep learning with generative adversarial network.
    Zhang Y; Yue N; Su MY; Liu B; Ding Y; Zhou Y; Wang H; Kuang Y; Nie K
    Med Phys; 2021 Jun; 48(6):2816-2826. PubMed ID: 33259647
    [TBL] [Abstract][Full Text] [Related]  

  • 15. FDG-PET to T1 Weighted MRI Translation with 3D Elicit Generative Adversarial Network (E-GAN).
    Bazangani F; Richard FJP; Ghattas B; Guedj E;
    Sensors (Basel); 2022 Jun; 22(12):. PubMed ID: 35746422
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A hierarchical GAN method with ensemble CNN for accurate nodule detection.
    Rezaei SR; Ahmadi A
    Int J Comput Assist Radiol Surg; 2023 Apr; 18(4):695-705. PubMed ID: 36522545
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Generating synthetic CT from low-dose cone-beam CT by using generative adversarial networks for adaptive radiotherapy.
    Gao L; Xie K; Wu X; Lu Z; Li C; Sun J; Lin T; Sui J; Ni X
    Radiat Oncol; 2021 Oct; 16(1):202. PubMed ID: 34649572
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bone Suppression on Chest Radiographs for Pulmonary Nodule Detection: Comparison between a Generative Adversarial Network and Dual-Energy Subtraction.
    Bae K; Oh DY; Yun ID; Jeon KN
    Korean J Radiol; 2022 Jan; 23(1):139-149. PubMed ID: 34983100
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Synthetic CT reconstruction using a deep spatial pyramid convolutional framework for MR-only breast radiotherapy.
    Olberg S; Zhang H; Kennedy WR; Chun J; Rodriguez V; Zoberi I; Thomas MA; Kim JS; Mutic S; Green OL; Park JC
    Med Phys; 2019 Sep; 46(9):4135-4147. PubMed ID: 31309586
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-Resolution Chest X-Ray Bone Suppression Using Unpaired CT Structural Priors.
    Li H; Han H; Li Z; Wang L; Wu Z; Lu J; Zhou SK
    IEEE Trans Med Imaging; 2020 Oct; 39(10):3053-3063. PubMed ID: 32275586
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.