These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

124 related articles for article (PubMed ID: 35863124)

  • 21. Online detection of class-imbalanced error-related potentials evoked by motor imagery.
    Liu Q; Zheng W; Chen K; Ma L; Ai Q
    J Neural Eng; 2021 Apr; 18(4):. PubMed ID: 33823492
    [No Abstract]   [Full Text] [Related]  

  • 22. A Symbols Based BCI Paradigm for Intelligent Home Control Using P300 Event-Related Potentials.
    Akram F; Alwakeel A; Alwakeel M; Hijji M; Masud U
    Sensors (Basel); 2022 Dec; 22(24):. PubMed ID: 36560369
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Robust detection of event-related potentials in a user-voluntary short-term imagery task.
    Lee MH; Williamson J; Kee YJ; Fazli S; Lee SW
    PLoS One; 2019; 14(12):e0226236. PubMed ID: 31877161
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Predicting Inter-session Performance of SMR-Based Brain-Computer Interface Using the Spectral Entropy of Resting-State EEG.
    Zhang R; Xu P; Chen R; Li F; Guo L; Li P; Zhang T; Yao D
    Brain Topogr; 2015 Sep; 28(5):680-690. PubMed ID: 25788102
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Improvement of Information Transfer Rates Using a Hybrid EEG-NIRS Brain-Computer Interface with a Short Trial Length: Offline and Pseudo-Online Analyses.
    Shin J; Kim DW; Müller KR; Hwang HJ
    Sensors (Basel); 2018 Jun; 18(6):. PubMed ID: 29874804
    [TBL] [Abstract][Full Text] [Related]  

  • 26. An online EEG BCI based on covert visuospatial attention in absence of exogenous stimulation.
    Tonin L; Leeb R; Sobolewski A; Millán Jdel R
    J Neural Eng; 2013 Oct; 10(5):056007. PubMed ID: 23918205
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Defining and quantifying users' mental imagery-based BCI skills: a first step.
    Lotte F; Jeunet C
    J Neural Eng; 2018 Aug; 15(4):046030. PubMed ID: 29769435
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A probabilistic approach for calibration time reduction in hybrid EEG-fTCD brain-computer interfaces.
    Khalaf A; Akcakaya M
    Biomed Eng Online; 2020 Apr; 19(1):23. PubMed ID: 32299441
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Long-Term BCI Training of a Tetraplegic User: Adaptive Riemannian Classifiers and User Training.
    Benaroch C; Sadatnejad K; Roc A; Appriou A; Monseigne T; Pramij S; Mladenovic J; Pillette L; Jeunet C; Lotte F
    Front Hum Neurosci; 2021; 15():635653. PubMed ID: 33815081
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Imagined character recognition through EEG signals using deep convolutional neural network.
    Ullah S; Halim Z
    Med Biol Eng Comput; 2021 May; 59(5):1167-1183. PubMed ID: 33945075
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Investigating the effects of visual distractors on the performance of a motor imagery brain-computer interface.
    Emami Z; Chau T
    Clin Neurophysiol; 2018 Jun; 129(6):1268-1275. PubMed ID: 29677690
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Channel Selection for Optimal EEG Measurement in Motor Imagery-Based Brain-Computer Interfaces.
    Arpaia P; Donnarumma F; Esposito A; Parvis M
    Int J Neural Syst; 2021 Mar; 31(3):2150003. PubMed ID: 33353529
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Classification of motor imagery EEG using deep learning increases performance in inefficient BCI users.
    Tibrewal N; Leeuwis N; Alimardani M
    PLoS One; 2022; 17(7):e0268880. PubMed ID: 35867703
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Individually adapted imagery improves brain-computer interface performance in end-users with disability.
    Scherer R; Faller J; Friedrich EV; Opisso E; Costa U; Kübler A; Müller-Putz GR
    PLoS One; 2015; 10(5):e0123727. PubMed ID: 25992718
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Temporally Constrained Sparse Group Spatial Patterns for Motor Imagery BCI.
    Zhang Y; Nam CS; Zhou G; Jin J; Wang X; Cichocki A
    IEEE Trans Cybern; 2019 Sep; 49(9):3322-3332. PubMed ID: 29994667
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Electroencephalography-based endogenous brain-computer interface for online communication with a completely locked-in patient.
    Han CH; Kim YW; Kim DY; Kim SH; Nenadic Z; Im CH
    J Neuroeng Rehabil; 2019 Jan; 16(1):18. PubMed ID: 30700310
    [TBL] [Abstract][Full Text] [Related]  

  • 37. On the feasibility of using motor imagery EEG-based brain-computer interface in chronic tetraplegics for assistive robotic arm control: a clinical test and long-term post-trial follow-up.
    Onose G; Grozea C; Anghelescu A; Daia C; Sinescu CJ; Ciurea AV; Spircu T; Mirea A; Andone I; Spânu A; Popescu C; Mihăescu AS; Fazli S; Danóczy M; Popescu F
    Spinal Cord; 2012 Aug; 50(8):599-608. PubMed ID: 22410845
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Error Correction Regression Framework for Enhancing the Decoding Accuracies of Ear-EEG Brain-Computer Interfaces.
    Kwak NS; Lee SW
    IEEE Trans Cybern; 2020 Aug; 50(8):3654-3667. PubMed ID: 31295141
    [TBL] [Abstract][Full Text] [Related]  

  • 39. On the way home: a BCI-FES hand therapy self-managed by sub-acute SCI participants and their caregivers: a usability study.
    Zulauf-Czaja A; Al-Taleb MKH; Purcell M; Petric-Gray N; Cloughley J; Vuckovic A
    J Neuroeng Rehabil; 2021 Feb; 18(1):44. PubMed ID: 33632262
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Brain-computer interface-based motor imagery training for patients with neurological movement disorders].
    Liburkina SP; Vasilyev AN; Kaplan AY; Ivanova GE; Chukanova AS
    Zh Nevrol Psikhiatr Im S S Korsakova; 2018; 118(9. Vyp. 2):63-68. PubMed ID: 30499562
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.