These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35863213)

  • 1. Remediation characteristics of surfactant-enhanced air sparging (SEAS) technology on volatile organic compounds contaminated soil with low permeability.
    Xu L; Yan L; Zha F; Zhu F; Tan X; Kang B; Yang C; Lin Z
    J Contam Hydrol; 2022 Oct; 250():104049. PubMed ID: 35863213
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Air sparging remediation of VOCs contaminated low-permeability soil based on pressure gradient control.
    Xu L; Zhu H; Zha F; Kang H; Fang L; Liu J; Tan X; Chu C
    Chemosphere; 2023 Oct; 339():139650. PubMed ID: 37495056
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mass transfer enhancement of air sparging on VOCs contaminated low-permeability soil by establishing pressure gradient.
    Xu L; Hu X; Zha F; Kang H; Fang L; Kang B; Chu C; Yang C
    Chemosphere; 2023 Feb; 313():137416. PubMed ID: 36460152
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of surfactant injection position on the airflow pattern and contaminant removal efficiency of surfactant-enhanced air sparging.
    Xu L; Wang Y; Zha F; Wang Q; Kang B; Yang C; Zhang W; Liu Z
    J Hazard Mater; 2021 Jan; 402():123564. PubMed ID: 33254743
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Remediation of nonaqueous phase liquid polluted sites using surfactant-enhanced air sparging and soil vapor extraction.
    Qin CY; Zhao YS; Su Y; Zheng W
    Water Environ Res; 2013 Feb; 85(2):133-40. PubMed ID: 23472329
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Mechanisms of surfactant-enhanced air sparging in different media.
    Qin CY; Zhao YS; Li LL; Zheng W
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(9):1047-55. PubMed ID: 23573925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Removal of NAPL from columns by oxidation, sparging, surfactant and thermal treatment.
    Jousse F; Atteia O; Höhener P; Cohen G
    Chemosphere; 2017 Dec; 188():182-189. PubMed ID: 28886552
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of airflow rate distribution and nitrobenzene removal in an aquifer with a low-permeability lens during surfactant-enhanced air sparging.
    Yao M; Yuan Q; Qu D; Liu W; Zhao Y; Wang M
    J Hazard Mater; 2022 Sep; 437():129383. PubMed ID: 35728315
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effect of increased groundwater viscosity on the remedial performance of surfactant-enhanced air sparging.
    Choi JK; Kim H; Kwon H; Annable MD
    J Contam Hydrol; 2018 Mar; 210():42-49. PubMed ID: 29502850
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Surfactant-enhanced ozone sparging for removal of organic compounds from sand.
    Kim H; Yang S; Yang H
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2013; 48(5):526-33. PubMed ID: 23383638
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Removal of non-aqueous phase liquids (NAPLs) from TPH-saturated sandy aquifer sediments using in situ air sparging combined with soil vapor extraction.
    Lee JH; Woo HJ; Jeong KS
    J Environ Sci Health A Tox Hazard Subst Environ Eng; 2018; 53(14):1253-1266. PubMed ID: 30623720
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Study on mechanisms and effect of surfactant-enhanced air sparging.
    Zheng W; Zhao YS; Qin CY; Wang B; Qu ZH
    Water Environ Res; 2010 Nov; 82(11):2258-64. PubMed ID: 21141387
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Aquifer remediation using surfactant-enhanced gas sparging applied to target the contaminant source.
    Cho MY; Oh MS; Annable MD; Kim H
    J Contam Hydrol; 2022 Jun; 248():104002. PubMed ID: 35395442
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Enhanced removal of VOCs from aquifers during air sparging using thickeners and surfactants: Bench-scale experiments.
    Kim H; Ahn D; Annable MD
    J Contam Hydrol; 2016 Jan; 184():25-34. PubMed ID: 26697745
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Remediation of chlorinated solvent plumes using in-situ air sparging--a 2-D laboratory study.
    Adams JA; Reddy KR; Tekola L
    Int J Environ Res Public Health; 2011 Jun; 8(6):2226-39. PubMed ID: 21776228
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Low-concentration tailing and subsequent quicklime-enhanced remediation of volatile chlorinated hydrocarbon-contaminated soils by mechanical soil aeration.
    Ma Y; Du X; Shi Y; Xu Z; Fang J; Li Z; Li F
    Chemosphere; 2015 Feb; 121():117-23. PubMed ID: 25433980
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Changes in air flow patterns using surfactants and thickeners during air sparging: bench-scale experiments.
    Kim J; Kim H; Annable MD
    J Contam Hydrol; 2015 Jan; 172():1-9. PubMed ID: 25462638
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Application of multiphase transport models to field remediation by air sparging and soil vapor extraction.
    Rahbeh ME; Mohtar RH
    J Hazard Mater; 2007 May; 143(1-2):156-70. PubMed ID: 17141413
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Remediation of saturated soil contaminated with petroleum products using air sparging with thermal enhancement.
    Mohamed AM; El-menshawy N; Saif AM
    J Environ Manage; 2007 May; 83(3):339-50. PubMed ID: 16844283
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Field application of modified in situ soil flushing in combination with air sparging at a military site polluted by diesel and gasoline in Korea.
    Lee H; Lee Y; Kim J; Kim C
    Int J Environ Res Public Health; 2014 Aug; 11(9):8806-24. PubMed ID: 25166919
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.