These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

167 related articles for article (PubMed ID: 35863248)

  • 1. Single-shot retinal image enhancement using untrained and pretrained neural networks priors integrated with analytical image priors.
    Qayyum A; Sultani W; Shamshad F; Tufail R; Qadir J
    Comput Biol Med; 2022 Sep; 148():105879. PubMed ID: 35863248
    [TBL] [Abstract][Full Text] [Related]  

  • 2. A deep learning-based framework for retinal fundus image enhancement.
    Lee KG; Song SJ; Lee S; Yu HG; Kim DI; Lee KM
    PLoS One; 2023; 18(3):e0282416. PubMed ID: 36928209
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Computer-aided diagnosis based on enhancement of degraded fundus photographs.
    Jin K; Zhou M; Wang S; Lou L; Xu Y; Ye J; Qian D
    Acta Ophthalmol; 2018 May; 96(3):e320-e326. PubMed ID: 29090844
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Contrast Enhancement of RGB Retinal Fundus Images for Improved Segmentation of Blood Vessels Using Convolutional Neural Networks.
    Sule O; Viriri S
    J Digit Imaging; 2023 Apr; 36(2):414-432. PubMed ID: 36456839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Retinal fundus image enhancement with image decomposition and visual adaptation.
    Wang J; Li YJ; Yang KF
    Comput Biol Med; 2021 Jan; 128():104116. PubMed ID: 33249342
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Untrained Neural Network Prior for Light Field Compression.
    Jiang X; Shi J; Guillemot C
    IEEE Trans Image Process; 2022; 31():6922-6936. PubMed ID: 36318548
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The region of interest localization for glaucoma analysis from retinal fundus image using deep learning.
    Mitra A; Banerjee PS; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Oct; 165():25-35. PubMed ID: 30337079
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of Hypertension, Diabetes, and Smoking on Age and Sex Prediction from Retinal Fundus Images.
    Kim YD; Noh KJ; Byun SJ; Lee S; Kim T; Sunwoo L; Lee KJ; Kang SH; Park KH; Park SJ
    Sci Rep; 2020 Mar; 10(1):4623. PubMed ID: 32165702
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Parallel-stream fusion of scan-specific and scan-general priors for learning deep MRI reconstruction in low-data regimes.
    Dar SUH; Öztürk Ş; Özbey M; Oguz KK; Çukur T
    Comput Biol Med; 2023 Dec; 167():107610. PubMed ID: 37883853
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A novel retinal vessel detection approach based on multiple deep convolution neural networks.
    Guo Y; Budak Ü; Şengür A
    Comput Methods Programs Biomed; 2018 Dec; 167():43-48. PubMed ID: 30501859
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Retinal image enhancement based on color dominance of image.
    C P; R JK
    Sci Rep; 2023 May; 13(1):7172. PubMed ID: 37138000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dual-Branch Discrimination Network Using Multiple Sparse Priors for Image Deblurring.
    Li J; Cheng S; Tao Y; Liu H; Zhou J; Zhang J
    Sensors (Basel); 2022 Aug; 22(16):. PubMed ID: 36015974
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Fourier ptychographic microscopy with untrained deep neural network priors.
    Chen Q; Huang D; Chen R
    Opt Express; 2022 Oct; 30(22):39597-39612. PubMed ID: 36298907
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Unsupervised arterial spin labeling image superresolution via multiscale generative adversarial network.
    Cui J; Gong K; Han P; Liu H; Li Q
    Med Phys; 2022 Apr; 49(4):2373-2385. PubMed ID: 35048390
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Enhancement and restoration of non-uniform illuminated Fundus Image of Retina obtained through thin layer of cataract.
    Mitra A; Roy S; Roy S; Setua SK
    Comput Methods Programs Biomed; 2018 Mar; 156():169-178. PubMed ID: 29428069
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust color medical image segmentation on unseen domain by randomized illumination enhancement.
    Zhang Z; Li Y; Shin BS
    Comput Biol Med; 2022 Jun; 145():105427. PubMed ID: 35585731
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A Retinex-based network for image enhancement in low-light environments.
    Wu J; Ding B; Zhang B; Ding J
    PLoS One; 2024; 19(5):e0303696. PubMed ID: 38787895
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bridging Synthetic and Real Images: A Transferable and Multiple Consistency Aided Fundus Image Enhancement Framework.
    Guo E; Fu H; Zhou L; Xu D
    IEEE Trans Med Imaging; 2023 Aug; 42(8):2189-2199. PubMed ID: 37027666
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Self-Supervised Feature Learning and Phenotyping for Assessing Age-Related Macular Degeneration Using Retinal Fundus Images.
    Yellapragada B; Hornauer S; Snyder K; Yu S; Yiu G
    Ophthalmol Retina; 2022 Feb; 6(2):116-129. PubMed ID: 34217854
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Deep Ensemble Learning Based Objective Grading of Macular Edema by Extracting Clinically Significant Findings from Fused Retinal Imaging Modalities.
    Hassan B; Hassan T; Li B; Ahmed R; Hassan O
    Sensors (Basel); 2019 Jul; 19(13):. PubMed ID: 31284442
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.