These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
167 related articles for article (PubMed ID: 35863248)
21. DAVS-NET: Dense Aggregation Vessel Segmentation Network for retinal vasculature detection in fundus images. Raza M; Naveed K; Akram A; Salem N; Afaq A; Madni HA; Khan MAU; Din MZ PLoS One; 2021; 16(12):e0261698. PubMed ID: 34972109 [TBL] [Abstract][Full Text] [Related]
22. Unpaired fundus image enhancement based on constrained generative adversarial networks. Yang L; Yao S; Chen P; Shen M; Fu S; Xing J; Xue Y; Chen X; Wen X; Zhao Y; Li W; Ma H; Li S; Tuchin VV; Zhao Q J Biophotonics; 2024 Sep; 17(9):e202400168. PubMed ID: 38962821 [TBL] [Abstract][Full Text] [Related]
23. Deep multi-instance heatmap regression for the detection of retinal vessel crossings and bifurcations in eye fundus images. Hervella ÁS; Rouco J; Novo J; Penedo MG; Ortega M Comput Methods Programs Biomed; 2020 Apr; 186():105201. PubMed ID: 31783244 [TBL] [Abstract][Full Text] [Related]
24. Efficient network selection for computer-aided cataract diagnosis under noisy environment. Pratap T; Kokil P Comput Methods Programs Biomed; 2021 Mar; 200():105927. PubMed ID: 33485073 [TBL] [Abstract][Full Text] [Related]
25. An enhancement method for color retinal images based on image formation model. Xiong L; Li H; Xu L Comput Methods Programs Biomed; 2017 May; 143():137-150. PubMed ID: 28391812 [TBL] [Abstract][Full Text] [Related]
26. Probabilistic self-learning framework for low-dose CT denoising. Bai T; Wang B; Nguyen D; Jiang S Med Phys; 2021 May; 48(5):2258-2270. PubMed ID: 33621348 [TBL] [Abstract][Full Text] [Related]
27. Retinal Vessel Segmentation using Round-wise Features Aggregation on Bracket-shaped Convolutional Neural Networks. Hua CH; Huynh-The T; Lee S Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():36-39. PubMed ID: 31945839 [TBL] [Abstract][Full Text] [Related]
28. Stacked U-Nets with self-assisted priors towards robust correction of rigid motion artifact in brain MRI. Al-Masni MA; Lee S; Yi J; Kim S; Gho SM; Choi YH; Kim DH Neuroimage; 2022 Oct; 259():119411. PubMed ID: 35753594 [TBL] [Abstract][Full Text] [Related]
29. Efficient learning-based blur removal method based on sparse optimization for image restoration. Yang H; Su X; Chen S; Zhu W; Ju C PLoS One; 2020; 15(3):e0230619. PubMed ID: 32218591 [TBL] [Abstract][Full Text] [Related]
30. Retinal vascular junction detection and classification via deep neural networks. Zhao H; Sun Y; Li H Comput Methods Programs Biomed; 2020 Jan; 183():105096. PubMed ID: 31586789 [TBL] [Abstract][Full Text] [Related]
31. Artery vein classification in fundus images using serially connected U-Nets. Karlsson RA; Hardarson SH Comput Methods Programs Biomed; 2022 Apr; 216():106650. PubMed ID: 35139461 [TBL] [Abstract][Full Text] [Related]
32. Fundus Image Enhancement Method Based on CycleGAN. You Q; Wan C; Sun J; Shen J; Ye H; Yu Q Annu Int Conf IEEE Eng Med Biol Soc; 2019 Jul; 2019():4500-4503. PubMed ID: 31946865 [TBL] [Abstract][Full Text] [Related]
33. Adaptive enhancement of cataractous retinal images for contrast standardization. Yang B; Cao L; Zhao H; Li H; Liu H; Wang N Med Biol Eng Comput; 2024 Feb; 62(2):357-369. PubMed ID: 37848753 [TBL] [Abstract][Full Text] [Related]
34. Development of automatic retinal vessel segmentation method in fundus images via convolutional neural networks. Joonyoung Song ; Boreom Lee Annu Int Conf IEEE Eng Med Biol Soc; 2017 Jul; 2017():681-684. PubMed ID: 29059964 [TBL] [Abstract][Full Text] [Related]
35. Retinal status analysis method based on feature extraction and quantitative grading in OCT images. Fu D; Tong H; Zheng S; Luo L; Gao F; Minar J Biomed Eng Online; 2016 Jul; 15(1):87. PubMed ID: 27449218 [TBL] [Abstract][Full Text] [Related]
36. Multi-Expert Deep Networks for Multi-Disease Detection in Retinal Fundus Images. Lyu L; Toubal IE; Palaniappan K Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():1818-1822. PubMed ID: 36086648 [TBL] [Abstract][Full Text] [Related]
37. Development and quantitative assessment of deep learning-based image enhancement for optical coherence tomography. Zhao X; Lv B; Meng L; Zhou X; Wang D; Zhang W; Wang E; Lv C; Xie G; Chen Y BMC Ophthalmol; 2022 Mar; 22(1):139. PubMed ID: 35346124 [TBL] [Abstract][Full Text] [Related]
38. Hemorrhage Detection Based on 3D CNN Deep Learning Framework and Feature Fusion for Evaluating Retinal Abnormality in Diabetic Patients. Maqsood S; Damaševičius R; Maskeliūnas R Sensors (Basel); 2021 Jun; 21(11):. PubMed ID: 34205120 [TBL] [Abstract][Full Text] [Related]
39. Lightweight and Efficient Image Dehazing Network Guided by Transmission Estimation from Real-World Hazy Scenes. Li Z; Zhang J; Zhong R; Bhanu B; Chen Y; Zhang Q; Tang H Sensors (Basel); 2021 Feb; 21(3):. PubMed ID: 33535456 [TBL] [Abstract][Full Text] [Related]