These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 35863565)
1. New methodology for assessing the environmental efficiency of transport: Application to the valorization of biomass from phytoremediation. Vigil M; Franco-Vazquez L; Marey-Pérez MF Sci Total Environ; 2022 Nov; 846():157434. PubMed ID: 35863565 [TBL] [Abstract][Full Text] [Related]
2. Is phytoremediation without biomass valorization sustainable? - comparative LCA of landfilling vs. anaerobic co-digestion. Vigil M; Marey-Pérez MF; Martinez Huerta G; Álvarez Cabal V Sci Total Environ; 2015 Feb; 505():844-50. PubMed ID: 25461087 [TBL] [Abstract][Full Text] [Related]
3. Quantitative Assessment of Life Cycle Sustainability (QUALICS): Framework and its application to assess electrokinetic remediation. da S Trentin AW; Reddy KR; Kumar G; Chetri JK; Thomé A Chemosphere; 2019 Sep; 230():92-106. PubMed ID: 31102876 [TBL] [Abstract][Full Text] [Related]
4. Safflower-based biorefinery producing a broad spectrum of biofuels and biochemicals: A life cycle assessment perspective. Hosseinzadeh-Bandbafha H; Nazemi F; Khounani Z; Ghanavati H; Shafiei M; Karimi K; Lam SS; Aghbashlo M; Tabatabaei M Sci Total Environ; 2022 Jan; 802():149842. PubMed ID: 34455274 [TBL] [Abstract][Full Text] [Related]
5. Design of a sustainable development process between phytoremediation and production of bioethanol with Eichhornia crassipes. Sayago UFC Environ Monit Assess; 2019 Mar; 191(4):221. PubMed ID: 30877391 [TBL] [Abstract][Full Text] [Related]
6. Emerging prospects of mixotrophic microalgae: Way forward to sustainable bioprocess for environmental remediation and cost-effective biofuels. Patel AK; Choi YY; Sim SJ Bioresour Technol; 2020 Mar; 300():122741. PubMed ID: 31956058 [TBL] [Abstract][Full Text] [Related]
7. Anaerobic digestion as an alternative disposal for phytoremediated biomass from heavy metal contaminated sites. Lee J; Park KY; Cho J; Kwon EE; Kim JY Environ Pollut; 2018 Dec; 243(Pt B):1704-1709. PubMed ID: 30408857 [TBL] [Abstract][Full Text] [Related]
8. Combined effects of carbonaceous-immobilizing agents and subsequent sulphur application on maize phytoextraction efficiency in highly contaminated soil. Kroulíková S; Mohnke S; Wenzel WW; Tejnecký V; Száková J; Mercl F; Tlustoš P Environ Sci Pollut Res Int; 2019 Jul; 26(20):20866-20878. PubMed ID: 31111391 [TBL] [Abstract][Full Text] [Related]
9. Life cycle assessment of heavy metal contaminated sites: phytoremediation and soil excavation. Lin LD; Ho JR; Yang BY; Ko CH; Chang FC Int J Phytoremediation; 2022; 24(4):334-341. PubMed ID: 34166152 [TBL] [Abstract][Full Text] [Related]
10. Coupling phytoremediation efficiency and detoxification to assess the role of P in the Cu tolerant Ricinus communis L. Zhou X; Wang S; Liu Y; Huang G; Yao S; Hu H Chemosphere; 2020 May; 247():125965. PubMed ID: 32069730 [TBL] [Abstract][Full Text] [Related]
11. Arsenic removal and biomass reduction of As-hyperaccumulator Pteris vittata: Coupling ethanol extraction with anaerobic digestion. da Silva EB; Mussoline WA; Wilkie AC; Ma LQ Sci Total Environ; 2019 May; 666():205-211. PubMed ID: 30798231 [TBL] [Abstract][Full Text] [Related]
12. Using contaminated plants involved in phytoremediation for anaerobic digestion. Cao Z; Wang S; Wang T; Chang Z; Shen Z; Chen Y Int J Phytoremediation; 2015; 17(1-6):201-7. PubMed ID: 25397976 [TBL] [Abstract][Full Text] [Related]
13. Chlorella vulgaris as a green biofuel factory: Comparison between biodiesel, biogas and combustible biomass production. Sakarika M; Kornaros M Bioresour Technol; 2019 Feb; 273():237-243. PubMed ID: 30447625 [TBL] [Abstract][Full Text] [Related]
14. Design of biomass-based renewable materials for environmental remediation. Zhang W; Zhang P; Wang H; Li J; Dai SY Trends Biotechnol; 2022 Dec; 40(12):1519-1534. PubMed ID: 36374762 [TBL] [Abstract][Full Text] [Related]
15. Anaerobic digestion of different feedstocks: impact on energetic and environmental balances of biogas process. Bacenetti J; Negri M; Fiala M; González-García S Sci Total Environ; 2013 Oct; 463-464():541-51. PubMed ID: 23831800 [TBL] [Abstract][Full Text] [Related]
16. Life cycle evaluation of microalgae biofuels production: Effect of cultivation system on energy, carbon emission and cost balance analysis. Dasan YK; Lam MK; Yusup S; Lim JW; Lee KT Sci Total Environ; 2019 Oct; 688():112-128. PubMed ID: 31229809 [TBL] [Abstract][Full Text] [Related]
17. A review on anaerobic digestion with focus on the role of biomass co-digestion, modelling and optimisation on biogas production and enhancement. Kunatsa T; Xia X Bioresour Technol; 2022 Jan; 344(Pt B):126311. PubMed ID: 34780910 [TBL] [Abstract][Full Text] [Related]
18. Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Xing Y; Li Z; Fan Y; Hou H Environ Sci Pollut Res Int; 2010 Feb; 17(2):392-9. PubMed ID: 19499259 [TBL] [Abstract][Full Text] [Related]
19. Determination of the phytoremediation efficiency of Ricinus communis L. and methane uptake from cadmium and nickel-contaminated soil using spent mushroom substrate. Sun Y; Wen C; Liang X; He C Environ Sci Pollut Res Int; 2018 Nov; 25(32):32603-32616. PubMed ID: 30242654 [TBL] [Abstract][Full Text] [Related]
20. Potential of Napier grass with cadmium-resistant bacterial inoculation on cadmium phytoremediation and its possibility to use as biomass fuel. Wiangkham N; Prapagdee B Chemosphere; 2018 Jun; 201():511-518. PubMed ID: 29529578 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]