BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 35863568)

  • 1. Projecting ozone impact on crop yield in Taiwan under climate warming.
    Tsai IC; Shu LS; Chen JP; Hsieh PR; Cheng CT
    Sci Total Environ; 2022 Nov; 846():157437. PubMed ID: 35863568
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Novel ozone flux metrics incorporating the detoxification process in the apoplast: An application to Chinese winter wheat.
    Wu R; Agathokleous E; Feng Z
    Sci Total Environ; 2021 May; 767():144588. PubMed ID: 33429267
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Effects of warming and elevated O
    Wang Y; Hu Z; Shang D; Xue Y; Islam ARMT; Chen S
    Environ Pollut; 2020 Feb; 257():113556. PubMed ID: 31796311
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effect of Warming and Elevated O
    Wang Y; Hu Z; Islam ARMT; Chen S; Shang D; Xue Y
    Int J Environ Res Public Health; 2019 May; 16(10):. PubMed ID: 31108948
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of ozone on maize (Zea mays L.) photosynthetic physiology, biomass and yield components based on exposure- and flux-response relationships.
    Peng J; Shang B; Xu Y; Feng Z; Calatayud V
    Environ Pollut; 2020 Jan; 256():113466. PubMed ID: 31679879
    [TBL] [Abstract][Full Text] [Related]  

  • 6. First observation-based study on surface O
    Kumari S; Lakhani A; Kumari KM
    Chemosphere; 2020 Sep; 255():126972. PubMed ID: 32402888
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of O
    Hu T; Liu S; Xu Y; Feng Z; Calatayud V
    Environ Pollut; 2020 Mar; 258():113828. PubMed ID: 31874438
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Ozone exposure- and flux-based response relationships with photosynthesis of winter wheat under fully open air condition.
    Feng Z; Calatayud V; Zhu J; Kobayashi K
    Sci Total Environ; 2018 Apr; 619-620():1538-1544. PubMed ID: 29055585
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An assessment of ozone risk for date palm suggests that phytotoxic ozone dose nonlinearly affects carbon gain.
    Hoshika Y; Moura BB; Cotrozzi L; Nali C; Alfarraj S; Rennenberg H; Paoletti E
    Environ Pollut; 2024 Feb; 342():123143. PubMed ID: 38097156
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ozone concentrations, flux and potential effect on yield during wheat growth in the Northwest-Shandong Plain of China.
    Zhu Z; Sun X; Zhao F; Meixner FX
    J Environ Sci (China); 2015 Aug; 34():1-9. PubMed ID: 26257340
    [TBL] [Abstract][Full Text] [Related]  

  • 11. From critical levels to critical loads for ozone: a discussion of a new experimental and modelling approach for establishing flux-response relationships for agricultural crops and native plant species.
    Grünhage L; Jäger HJ
    Environ Pollut; 2003; 125(1):99-110. PubMed ID: 12804832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Regional temperature-ozone relationships across the U.S. under multiple climate and emissions scenarios.
    Nolte CG; Spero TL; Bowden JH; Sarofim MC; Martinich J; Mallard MS
    J Air Waste Manag Assoc; 2021 Oct; 71(10):1251-1264. PubMed ID: 34406104
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Comparison of crop yield sensitivity to ozone between open-top chamber and free-air experiments.
    Feng Z; Uddling J; Tang H; Zhu J; Kobayashi K
    Glob Chang Biol; 2018 Jun; 24(6):2231-2238. PubMed ID: 29393991
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A regional scale flux-based O
    Guaita PR; Marzuoli R; Gerosa GA
    Environ Pollut; 2023 Sep; 333():121860. PubMed ID: 37268219
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Impacts of meteorological factors and ozone variation on crop yields in China concerning carbon neutrality objectives in 2060.
    Xu B; Wang T; Gao L; Ma D; Song R; Zhao J; Yang X; Li S; Zhuang B; Li M; Xie M
    Environ Pollut; 2023 Jan; 317():120715. PubMed ID: 36436657
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A projection of ozone-induced wheat production loss in China and India for the years 2000 and 2020 with exposure-based and flux-based approaches.
    Tang H; Takigawa M; Liu G; Zhu J; Kobayashi K
    Glob Chang Biol; 2013 Sep; 19(9):2739-52. PubMed ID: 23661338
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Assessment of ozone risk to Central European forests: Time series indicates perennial exceedance of ozone critical levels.
    Eghdami H; Werner W; Büker P; Sicard P
    Environ Res; 2022 Jan; 203():111798. PubMed ID: 34333015
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Decadal changes in surface ozone at the tropical station Thiruvananthapuram (8.542° N, 76.858° E), India: effects of anthropogenic activities and meteorological variability.
    Nair PR; Ajayakumar RS; David LM; Girach IA; Mottungan K
    Environ Sci Pollut Res Int; 2018 May; 25(15):14827-14843. PubMed ID: 29541985
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Estimated crop yield losses due to surface ozone exposure and economic damage in India.
    Debaje SB
    Environ Sci Pollut Res Int; 2014 Jun; 21(12):7329-38. PubMed ID: 24573465
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Developing ozone critical levels for multi-species canopies of Mediterranean annual pastures.
    Calvete-Sogo H; González-Fernández I; García-Gómez H; Alonso R; Elvira S; Sanz J; Bermejo-Bermejo V
    Environ Pollut; 2017 Jan; 220(Pt A):186-195. PubMed ID: 27751637
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.