BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

175 related articles for article (PubMed ID: 35863675)

  • 1. ExoPLOT: Representation of alternative splicing in human tissues and developmental stages with transposed element (TE) involvement.
    Zhang F; Raabe CA; Cardoso-Moreira M; Brosius J; Kaessmann H; Schmitz J
    Genomics; 2022 Jul; 114(4):110434. PubMed ID: 35863675
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inferring the expression variability of human transposable element-derived exons by linear model analysis of deep RNA sequencing data.
    Zhang W; Edwards A; Fan W; Fang Z; Deininger P; Zhang K
    BMC Genomics; 2013 Aug; 14():584. PubMed ID: 23984937
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Exonization of transposed elements: A challenge and opportunity for evolution.
    Schmitz J; Brosius J
    Biochimie; 2011 Nov; 93(11):1928-34. PubMed ID: 21787833
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Bioinformatic analysis of TE-spliced new exons within human, mouse and zebrafish genomes.
    Kim DS; Huh JW; Kim YH; Park SJ; Kim HS; Chang KT
    Genomics; 2010 Nov; 96(5):266-71. PubMed ID: 20728532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome.
    Sela N; Mersch B; Gal-Mark N; Lev-Maor G; Hotz-Wagenblatt A; Ast G
    Genome Biol; 2007; 8(6):R127. PubMed ID: 17594509
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Long-read direct RNA sequencing by 5'-Cap capturing reveals the impact of Piwi on the widespread exonization of transposable elements in locusts.
    Jiang F; Zhang J; Liu Q; Liu X; Wang H; He J; Kang L
    RNA Biol; 2019 Jul; 16(7):950-959. PubMed ID: 30982421
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluating the protein coding potential of exonized transposable element sequences.
    Piriyapongsa J; Rutledge MT; Patel S; Borodovsky M; Jordan IK
    Biol Direct; 2007 Nov; 2():31. PubMed ID: 18036258
    [TBL] [Abstract][Full Text] [Related]  

  • 8. SERpredict: detection of tissue- or tumor-specific isoforms generated through exonization of transposable elements.
    Mersch B; Sela N; Ast G; Suhai S; Hotz-Wagenblatt A
    BMC Genet; 2007 Nov; 8():78. PubMed ID: 17986331
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Transposable elements in disease-associated cryptic exons.
    Vorechovsky I
    Hum Genet; 2010 Feb; 127(2):135-54. PubMed ID: 19823873
    [TBL] [Abstract][Full Text] [Related]  

  • 10. An atlas of transposable element-derived alternative splicing in cancer.
    Clayton EA; Rishishwar L; Huang TC; Gulati S; Ban D; McDonald JF; Jordan IK
    Philos Trans R Soc Lond B Biol Sci; 2020 Mar; 375(1795):20190342. PubMed ID: 32075558
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Genome-wide survey of ds exonization to enrich transcriptomes and proteomes in plants.
    Liu LY; Charng YC
    Evol Bioinform Online; 2012; 8():575-87. PubMed ID: 23091369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. TranspoGene and microTranspoGene: transposed elements influence on the transcriptome of seven vertebrates and invertebrates.
    Levy A; Sela N; Ast G
    Nucleic Acids Res; 2008 Jan; 36(Database issue):D47-52. PubMed ID: 17986453
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Transposon clusters as substrates for aberrant splice-site activation.
    Alvarez MEV; Chivers M; Borovska I; Monger S; Giannoulatou E; Kralovicova J; Vorechovsky I
    RNA Biol; 2021 Mar; 18(3):354-367. PubMed ID: 32965162
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The role of transposable elements in the evolution of non-mammalian vertebrates and invertebrates.
    Sela N; Kim E; Ast G
    Genome Biol; 2010; 11(6):R59. PubMed ID: 20525173
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Characteristics of transposable element exonization within human and mouse.
    Sela N; Mersch B; Hotz-Wagenblatt A; Ast G
    PLoS One; 2010 Jun; 5(6):e10907. PubMed ID: 20532223
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Large introns in relation to alternative splicing and gene evolution: a case study of Drosophila bruno-3.
    Kandul NP; Noor MA
    BMC Genet; 2009 Oct; 10():67. PubMed ID: 19840385
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Autonomous transposons tune their sequences to ensure somatic suppression.
    Ilık İA; Glažar P; Tse K; Brändl B; Meierhofer D; Müller FJ; Smith ZD; Aktaş T
    Nature; 2024 Feb; 626(8001):1116-1124. PubMed ID: 38355802
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Mining Arabidopsis thaliana RNA-seq data with Integrated Genome Browser reveals stress-induced alternative splicing of the putative splicing regulator SR45a.
    Gulledge AA; Roberts AD; Vora H; Patel K; Loraine AE
    Am J Bot; 2012 Feb; 99(2):219-31. PubMed ID: 22291167
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The extent of Ds1 transposon to enrich transcriptomes and proteomes by exonization.
    Charng YC; Liu LD
    Bot Stud; 2013 Dec; 54(1):14. PubMed ID: 28510860
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Large-scale analysis of exonized mammalian-wide interspersed repeats in primate genomes.
    Lin L; Jiang P; Shen S; Sato S; Davidson BL; Xing Y
    Hum Mol Genet; 2009 Jun; 18(12):2204-14. PubMed ID: 19324900
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.