These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 35863931)

  • 21. Modular Engineering Intracellular NADH Regeneration Boosts Extracellular Electron Transfer of Shewanella oneidensis MR-1.
    Li F; Li Y; Sun L; Chen X; An X; Yin C; Cao Y; Wu H; Song H
    ACS Synth Biol; 2018 Mar; 7(3):885-895. PubMed ID: 29429342
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Spatiotemporal mapping of bacterial membrane potential responses to extracellular electron transfer.
    Pirbadian S; Chavez MS; El-Naggar MY
    Proc Natl Acad Sci U S A; 2020 Aug; 117(33):20171-20179. PubMed ID: 32747561
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Dual detection of biochemical oxygen demand and nitrate in water based on bidirectional Shewanella loihica electron transfer.
    Yi Y; Zhao T; Xie B; Zang Y; Liu H
    Bioresour Technol; 2020 Aug; 309():123402. PubMed ID: 32361616
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Wettability-regulated extracellular electron transfer from the living organism of Shewanella loihica PV-4.
    Ding CM; Lv ML; Zhu Y; Jiang L; Liu H
    Angew Chem Int Ed Engl; 2015 Jan; 54(5):1446-51. PubMed ID: 25470810
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Engineering S. oneidensis for Performance Improvement of Microbial Fuel Cell-a Mini Review.
    Leung DHL; Lim YS; Uma K; Pan GT; Lin JH; Chong S; Yang TC
    Appl Biochem Biotechnol; 2021 Apr; 193(4):1170-1186. PubMed ID: 33200267
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Nanomaterials Facilitating Microbial Extracellular Electron Transfer at Interfaces.
    Wang R; Li H; Sun J; Zhang L; Jiao J; Wang Q; Liu S
    Adv Mater; 2021 Feb; 33(6):e2004051. PubMed ID: 33325567
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Tailoring Surface Properties of Electrodes for Synchronous Enhanced Extracellular Electron Transfer and Enriched Exoelectrogens in Microbial Fuel Cells.
    Li Y; Liu J; Chen X; Wu J; Li N; He W; Feng Y
    ACS Appl Mater Interfaces; 2021 Dec; 13(49):58508-58521. PubMed ID: 34871496
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Microbial electrocatalysis: Redox mediators responsible for extracellular electron transfer.
    Liu X; Shi L; Gu JD
    Biotechnol Adv; 2018 Nov; 36(7):1815-1827. PubMed ID: 30196813
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Potential-dependent extracellular electron transfer pathways of exoelectrogens.
    Liu DF; Li WW
    Curr Opin Chem Biol; 2020 Dec; 59():140-146. PubMed ID: 32769012
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electrochemical Characteristics of
    Wang S; Zhang X; Marsili E
    Molecules; 2022 Aug; 27(16):. PubMed ID: 36014568
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Enhanced Current Production by Exogenous Electron Mediators via Synergy of Promoting Biofilm Formation and the Electron Shuttling Process.
    Wu Y; Luo X; Qin B; Li F; Häggblom MM; Liu T
    Environ Sci Technol; 2020 Jun; 54(12):7217-7225. PubMed ID: 32352288
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Electromicrobiology: realities, grand challenges, goals and predictions.
    Nealson KH; Rowe AR
    Microb Biotechnol; 2016 Sep; 9(5):595-600. PubMed ID: 27506517
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Electrolocation? The evidence for redox-mediated taxis in Shewanella oneidensis.
    Starwalt-Lee R; El-Naggar MY; Bond DR; Gralnick JA
    Mol Microbiol; 2021 Jun; 115(6):1069-1079. PubMed ID: 33200455
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Engineered cytochrome fused extracellular matrix enabled efficient extracellular electron transfer and improved performance of microbial fuel cell.
    Chen YY; Yang FQ; Xu N; Wang XQ; Xie PC; Wang YZ; Fang Z; Yong YC
    Sci Total Environ; 2022 Jul; 830():154806. PubMed ID: 35341857
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Investigating the interaction between Shewanella oneidensis and phenazine 1-carboxylic acid in the microbial electrochemical processes.
    Yu YY; Zhang Y; Peng L
    Sci Total Environ; 2022 Sep; 838(Pt 3):156501. PubMed ID: 35667430
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Effect of oxygen on the per-cell extracellular electron transfer rate of Shewanella oneidensis MR-1 explored in bioelectrochemical systems.
    Lu M; Chan S; Babanova S; Bretschger O
    Biotechnol Bioeng; 2017 Jan; 114(1):96-105. PubMed ID: 27399911
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Shewanella frigidimarina microbial fuel cells and the influence of divalent cations on current output.
    Fitzgerald LA; Petersen ER; Leary DH; Nadeau LJ; Soto CM; Ray RI; Little BJ; Ringeisen BR; Johnson GR; Vora GJ; Biffinger JC
    Biosens Bioelectron; 2013 Feb; 40(1):102-9. PubMed ID: 22796023
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Metagenomic insights into the ecology and physiology of microbes in bioelectrochemical systems.
    Kouzuma A; Ishii S; Watanabe K
    Bioresour Technol; 2018 May; 255():302-307. PubMed ID: 29426790
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Molecular mechanisms regulating the catabolic and electrochemical activities of Shewanella oneidensis MR-1.
    Kouzuma A
    Biosci Biotechnol Biochem; 2021 Jun; 85(7):1572-1581. PubMed ID: 33998649
    [TBL] [Abstract][Full Text] [Related]  

  • 40. The utility of Shewanella japonica for microbial fuel cells.
    Biffinger JC; Fitzgerald LA; Ray R; Little BJ; Lizewski SE; Petersen ER; Ringeisen BR; Sanders WC; Sheehan PE; Pietron JJ; Baldwin JW; Nadeau LJ; Johnson GR; Ribbens M; Finkel SE; Nealson KH
    Bioresour Technol; 2011 Jan; 102(1):290-7. PubMed ID: 20663660
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.