These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

332 related articles for article (PubMed ID: 35864313)

  • 1. Landslide susceptibility mapping by integrating analytical hierarchy process, frequency ratio, and fuzzy gamma operator models, case study: North of Lorestan Province, Iran.
    Eitvandi N; Sarikhani R; Derikvand S
    Environ Monit Assess; 2022 Jul; 194(9):600. PubMed ID: 35864313
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Determination of landslide susceptibility with Analytic Hierarchy Process (AHP) and the role of forest ecosystem services on landslide susceptibility.
    Aksoy H
    Environ Monit Assess; 2023 Nov; 195(12):1525. PubMed ID: 37994954
    [TBL] [Abstract][Full Text] [Related]  

  • 3. GIS-based landslide susceptibility mapping using heuristic and bivariate statistical methods for Iva Valley and environs Southeast Nigeria.
    Ozioko OH; Igwe O
    Environ Monit Assess; 2020 Jan; 192(2):119. PubMed ID: 31950278
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of landslide susceptibility maps of Tripura, India using GIS and analytical hierarchy process (AHP).
    Nath NK; Gautam VK; Pande CB; Mishra LR; Raju JT; Moharir KN; Rane NL
    Environ Sci Pollut Res Int; 2024 Jan; 31(5):7481-7497. PubMed ID: 38159190
    [TBL] [Abstract][Full Text] [Related]  

  • 5. GIS-based landslide susceptibility zonation mapping using the analytic hierarchy process (AHP) method in parts of Kalimpong Region of Darjeeling Himalaya.
    Das S; Sarkar S; Kanungo DP
    Environ Monit Assess; 2022 Mar; 194(3):234. PubMed ID: 35229227
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ensemble of fuzzy-analytical hierarchy process in landslide susceptibility modeling from a humid tropical region of Western Ghats, Southern India.
    Gopinath G; Jesiya N; Achu AL; Bhadran A; Surendran UP
    Environ Sci Pollut Res Int; 2024 Jun; 31(29):41370-41387. PubMed ID: 37156952
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Evaluation of landslides susceptibility in Southeastern Tibet considering seismic sensitivity.
    Yeqi Z; Yonggang G; Guowen W; Shengjie W
    Heliyon; 2024 Sep; 10(18):e36800. PubMed ID: 39309935
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A GIS-based extended fuzzy multi-criteria evaluation for landslide susceptibility mapping.
    Feizizadeh B; Shadman Roodposhti M; Jankowski P; Blaschke T
    Comput Geosci; 2014 Dec; 73():208-221. PubMed ID: 26089577
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Comparison of Random Forest Model and Frequency Ratio Model for Landslide Susceptibility Mapping (LSM) in Yunyang County (Chongqing, China).
    Wang Y; Sun D; Wen H; Zhang H; Zhang F
    Int J Environ Res Public Health; 2020 Jun; 17(12):. PubMed ID: 32545618
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Landslide Susceptibility Evaluation Using Different Slope Units Based on BP Neural Network.
    Huang J; Zeng X; Ding L; Yin Y; Li Y
    Comput Intell Neurosci; 2022; 2022():9923775. PubMed ID: 35655489
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Zonation of Landslide Susceptibility in Ruijin, Jiangxi, China.
    Zhou X; Wu W; Lin Z; Zhang G; Chen R; Song Y; Wang Z; Lang T; Qin Y; Ou P; Huangfu W; Zhang Y; Xie L; Huang X; Fu X; Li J; Jiang J; Zhang M; Liu Y; Peng S; Shao C; Bai Y; Zhang X; Liu X; Liu W
    Int J Environ Res Public Health; 2021 May; 18(11):. PubMed ID: 34072874
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A new combined approach of neural-metaheuristic algorithms for predicting and appraisal of landslide susceptibility mapping.
    Moayedi H; Dehrashid AA
    Environ Sci Pollut Res Int; 2023 Jul; 30(34):82964-82989. PubMed ID: 37336850
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Landslide susceptibility mapping in an area of underground mining using the multicriteria decision analysis method.
    Arca D; Kutoğlu HŞ; Becek K
    Environ Monit Assess; 2018 Nov; 190(12):725. PubMed ID: 30430322
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Evaluating causative factors for landslide susceptibility along the Imphal-Jiribam railway corridor in the North-Eastern part of India using a GIS-based statistical approach.
    Singh A; Ashuli A; C NK; Dhiman N; Dubey CS; Shukla DP
    Environ Sci Pollut Res Int; 2024 Sep; 31(41):53767-53784. PubMed ID: 37563510
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Exploring machine learning and statistical approach techniques for landslide susceptibility mapping in Siwalik Himalayan Region using geospatial technology.
    Saha A; Tripathi L; Villuri VGK; Bhardwaj A
    Environ Sci Pollut Res Int; 2024 Feb; 31(7):10443-10459. PubMed ID: 38198087
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Utilization of frequency ratio method for the production of landslide susceptibility maps: Karaburun Peninsula case, Turkey.
    Karaman MO; Çabuk SN; Pekkan E
    Environ Sci Pollut Res Int; 2022 Dec; 29(60):91285-91305. PubMed ID: 35882738
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The Influence of Different Knowledge-Driven Methods on Landslide Susceptibility Mapping: A Case Study in the Changbai Mountain Area, Northeast China.
    Ma Z; Qin S; Cao C; Lv J; Li G; Qiao S; Hu X
    Entropy (Basel); 2019 Apr; 21(4):. PubMed ID: 33267086
    [TBL] [Abstract][Full Text] [Related]  

  • 18. GIS-based data-driven bivariate statistical models for landslide susceptibility prediction in Upper Tista Basin, India.
    Das J; Saha P; Mitra R; Alam A; Kamruzzaman M
    Heliyon; 2023 May; 9(5):e16186. PubMed ID: 37234665
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Landslide susceptibility zonation using the analytical hierarchy process (AHP) in the Great Xi'an Region, China.
    Liu X; Shao S; Shao S
    Sci Rep; 2024 Feb; 14(1):2941. PubMed ID: 38316944
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Integrated assessment of groundwater potential zones and artificial recharge sites using GIS and Fuzzy-AHP: a case study in Peddavagu watershed, India.
    Shekar PR; Mathew A
    Environ Monit Assess; 2023 Jun; 195(7):906. PubMed ID: 37382701
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 17.