These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
332 related articles for article (PubMed ID: 35864313)
21. GIS-based multicriteria decision analysis for settlement areas: a case study in Canik. Kilicoglu C Environ Sci Pollut Res Int; 2022 May; 29(24):35746-35759. PubMed ID: 35060034 [TBL] [Abstract][Full Text] [Related]
22. A Robust Deep-Learning Model for Landslide Susceptibility Mapping: A Case Study of Kurdistan Province, Iran. Ghasemian B; Shahabi H; Shirzadi A; Al-Ansari N; Jaafari A; Kress VR; Geertsema M; Renoud S; Ahmad A Sensors (Basel); 2022 Feb; 22(4):. PubMed ID: 35214473 [TBL] [Abstract][Full Text] [Related]
23. Landslide Susceptibility Assessment Using Spatial Multi-Criteria Evaluation Model in Rwanda. Nsengiyumva JB; Luo G; Nahayo L; Huang X; Cai P Int J Environ Res Public Health; 2018 Jan; 15(2):. PubMed ID: 29385096 [TBL] [Abstract][Full Text] [Related]
24. Integrating stratified best-worst method and GIS for landslide susceptibility assessment: a case study in Erzurum province (Turkey). Konurhan Z; Yucesan M; Gul M Environ Sci Pollut Res Int; 2023 Nov; 30(53):113978-114000. PubMed ID: 37858024 [TBL] [Abstract][Full Text] [Related]
25. Refined Zoning of Landslide Susceptibility: A Case Study in Enshi County, Hubei, China. Wang Z; Ma C; Qiu Y; Xiong H; Li M Int J Environ Res Public Health; 2022 Aug; 19(15):. PubMed ID: 35954770 [TBL] [Abstract][Full Text] [Related]
26. Landslide susceptibility mapping using GIS-based statistical models and Remote sensing data in tropical environment. Shahabi H; Hashim M Sci Rep; 2015 Apr; 5():9899. PubMed ID: 25898919 [TBL] [Abstract][Full Text] [Related]
27. Landslide susceptibility assessment using the Weight of Evidence method: A case study in Xunyang area, China. Cao Y; Wei X; Fan W; Nan Y; Xiong W; Zhang S PLoS One; 2021; 16(1):e0245668. PubMed ID: 33493200 [TBL] [Abstract][Full Text] [Related]
28. Slide type landslide susceptibility assessment of the Büyük Menderes watershed using artificial neural network method. Tekin S; Çan T Environ Sci Pollut Res Int; 2022 Jul; 29(31):47174-47188. PubMed ID: 35178630 [TBL] [Abstract][Full Text] [Related]
29. A novel evolutionary combination of artificial intelligence algorithm and machine learning for landslide susceptibility mapping in the west of Iran. Shen Y; Ahmadi Dehrashid A; Bahar RA; Moayedi H; Nasrollahizadeh B Environ Sci Pollut Res Int; 2023 Dec; 30(59):123527-123555. PubMed ID: 37987977 [TBL] [Abstract][Full Text] [Related]
30. Identification of precipitation trend and landslide susceptibility analysis in Miandoab County using MATLAB. Rezapour Andabili N; Safaripour M Environ Monit Assess; 2022 Jun; 194(7):472. PubMed ID: 35655104 [TBL] [Abstract][Full Text] [Related]
31. Comparing probabilistic and statistical methods in landslide susceptibility modeling in Rwanda/Centre-Eastern Africa. Nsengiyumva JB; Luo G; Amanambu AC; Mind'je R; Habiyaremye G; Karamage F; Ochege FU; Mupenzi C Sci Total Environ; 2019 Apr; 659():1457-1472. PubMed ID: 31096356 [TBL] [Abstract][Full Text] [Related]
32. Effects of land-use changes on landslides in a landslide-prone area (Ardesen, Rize, NE Turkey). Karsli F; Atasoy M; Yalcin A; Reis S; Demir O; Gokceoglu C Environ Monit Assess; 2009 Sep; 156(1-4):241-55. PubMed ID: 18780152 [TBL] [Abstract][Full Text] [Related]
33. Evaluation of Landslide Susceptibility Based on CF-SVM in Nujiang Prefecture. Li Y; Deng X; Ji P; Yang Y; Jiang W; Zhao Z Int J Environ Res Public Health; 2022 Oct; 19(21):. PubMed ID: 36361126 [TBL] [Abstract][Full Text] [Related]
34. Optimizing the Predictive Ability of Machine Learning Methods for Landslide Susceptibility Mapping Using SMOTE for Lishui City in Zhejiang Province, China. Wang Y; Wu X; Chen Z; Ren F; Feng L; Du Q Int J Environ Res Public Health; 2019 Jan; 16(3):. PubMed ID: 30696105 [TBL] [Abstract][Full Text] [Related]
35. Landslide Susceptibility Evaluation of Machine Learning Based on Information Volume and Frequency Ratio: A Case Study of Weixin County, China. He W; Chen G; Zhao J; Lin Y; Qin B; Yao W; Cao Q Sensors (Basel); 2023 Feb; 23(5):. PubMed ID: 36904752 [TBL] [Abstract][Full Text] [Related]
36. Game-theoretic optimization of landslide susceptibility mapping: a comparative study between Bayesian-optimized basic neural network and new generation neural network models. Mallick J; Alkahtani M; Hang HT; Singh CK Environ Sci Pollut Res Int; 2024 Apr; 31(20):29811-29835. PubMed ID: 38592629 [TBL] [Abstract][Full Text] [Related]
37. Optimizing an Adaptive Neuro-Fuzzy Inference System for Spatial Prediction of Landslide Susceptibility Using Four State-of-the-art Metaheuristic Techniques. Mehrabi M; Pradhan B; Moayedi H; Alamri A Sensors (Basel); 2020 Mar; 20(6):. PubMed ID: 32204505 [TBL] [Abstract][Full Text] [Related]
38. Optimization of Causative Factors for Landslide Susceptibility Evaluation Using Remote Sensing and GIS Data in Parts of Niigata, Japan. Dou J; Tien Bui D; Yunus AP; Jia K; Song X; Revhaug I; Xia H; Zhu Z PLoS One; 2015; 10(7):e0133262. PubMed ID: 26214691 [TBL] [Abstract][Full Text] [Related]
39. GIS-based landslide susceptibility mapping in the Longmen Mountain area (China) using three different machine learning algorithms and their comparison. Huang Z; Peng L; Li S; Liu Y; Zhou S Environ Sci Pollut Res Int; 2023 Aug; 30(38):88612-88626. PubMed ID: 37440134 [TBL] [Abstract][Full Text] [Related]