BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

130 related articles for article (PubMed ID: 35864785)

  • 1. Enhancing the Biofidelity of an Upper Cervical Spine Finite Element Model Within the Physiologic Range of Motion and Its Effect on the Full Ligamentous Neck Model Response.
    Hadagali P; Cronin DS
    J Biomech Eng; 2023 Jan; 145(1):. PubMed ID: 35864785
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Incorporating ligament laxity in a finite element model for the upper cervical spine.
    Lasswell TL; Cronin DS; Medley JB; Rasoulinejad P
    Spine J; 2017 Nov; 17(11):1755-1764. PubMed ID: 28673824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Out-of-Position Rear Impact Tissue-Level Investigation Using Detailed Finite Element Neck Model.
    Shateri H; Cronin DS
    Traffic Inj Prev; 2015; 16(7):698-708. PubMed ID: 25664486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Development of a finite element model of the upper cervical spine and a parameter study of ligament characteristics.
    Brolin K; Halldin P
    Spine (Phila Pa 1976); 2004 Feb; 29(4):376-85. PubMed ID: 15094533
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The effect of follower load on the range of motion, facet joint force, and intradiscal pressure of the cervical spine: a finite element study.
    Cai XY; YuChi CX; Du CF; Mo ZJ
    Med Biol Eng Comput; 2020 Aug; 58(8):1695-1705. PubMed ID: 32462554
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Establishment and Finite Element Analysis of a Three-dimensional Dynamic Model of Upper Cervical Spine Instability.
    Wang XD; Feng MS; Hu YC
    Orthop Surg; 2019 Jun; 11(3):500-509. PubMed ID: 31243925
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Neural space integrity of the lower cervical spine: effect of normal range of motion.
    Nuckley DJ; Konodi MA; Raynak GC; Ching RP; Mirza SK
    Spine (Phila Pa 1976); 2002 Mar; 27(6):587-95. PubMed ID: 11884906
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A finite element investigation of upper cervical instrumentation.
    Puttlitz CM; Goel VK; Traynelis VC; Clark CR
    Spine (Phila Pa 1976); 2001 Nov; 26(22):2449-55. PubMed ID: 11707709
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Finite element analysis of the cervical spine: a material property sensitivity study.
    Kumaresan S; Yoganandan N; Pintar FA
    Clin Biomech (Bristol, Avon); 1999 Jan; 14(1):41-53. PubMed ID: 10619089
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Finite element modeling of potential cervical spine pain sources in neutral position low speed rear impact.
    Cronin DS
    J Mech Behav Biomed Mater; 2014 May; 33():55-66. PubMed ID: 23466282
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Motion analysis study on sensitivity of finite element model of the cervical spine to geometry.
    Zafarparandeh I; Erbulut DU; Ozer AF
    Proc Inst Mech Eng H; 2016 Jul; 230(7):700-6. PubMed ID: 27107032
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biomechanical contribution of the alar ligaments to upper cervical stability.
    Tisherman R; Hartman R; Hariharan K; Vaudreuil N; Sowa G; Schneider M; Timko M; Bell K
    J Biomech; 2020 Jan; 99():109508. PubMed ID: 31813563
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Biomechanical rationale for the pathology of rheumatoid arthritis in the craniovertebral junction.
    Puttlitz CM; Goel VK; Clark CR; Traynelis VC; Scifert JL; Grosland NM
    Spine (Phila Pa 1976); 2000 Jul; 25(13):1607-16. PubMed ID: 10870135
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Numerical investigation on the stability of human upper cervical spine (C1-C3).
    Rahman WU; Jiang W; Wang G; Li Z
    Biomed Mater Eng; 2022; 33(3):169-181. PubMed ID: 34633311
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development, validation, and application of ligamentous cervical spinal segment C6-C7 of a six-year-old child and an adult.
    Li Z; Song G; Su Z; Wang G
    Comput Methods Programs Biomed; 2020 Jan; 183():105080. PubMed ID: 31525549
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Global and regional kinematics of the cervical spine during upper cervical spine manipulation: a reliability analysis of 3D motion data.
    Dugailly PM; Beyer B; Sobczak S; Salvia P; Feipel V
    Man Ther; 2014 Oct; 19(5):472-7. PubMed ID: 24920337
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intubation biomechanics: validation of a finite element model of cervical spine motion during endotracheal intubation in intact and injured conditions.
    Gadomski BC; Shetye SS; Hindman BJ; Dexter F; Santoni BG; Todd MM; Traynelis VC; From RP; Fontes RB; Puttlitz CM
    J Neurosurg Spine; 2018 Jan; 28(1):10-22. PubMed ID: 29053084
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Soft Tissue Injury in Cervical Spine Is a Risk Factor for Intersegmental Instability: A Finite Element Analysis.
    Nishida N; Tripathi S; Mumtaz M; Kelkar A; Kumaran Y; Sakai T; Goel VK
    World Neurosurg; 2022 Aug; 164():e358-e366. PubMed ID: 35513283
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vitro upper cervical spine kinematics: Rotation with combined movements and its variation after alar ligament transection.
    Lorente AI; Hidalgo-García C; Fanlo-Mazas P; Rodríguez-Sanz J; López-de-Celis C; Krauss J; Maza-Frechín M; Tricás-Moreno JM; Pérez-Bellmunt A
    J Biomech; 2022 Jan; 130():110872. PubMed ID: 34839151
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Effect of alar ligament transection in side-bending stress test: A cadaveric study.
    Hidalgo-García C; Lorente AI; Rodríguez-Sanz J; Miguel Tricás-Moreno J; Simon M; Maza-Frechín M; Lopez-de-Celis C; Krauss J; Pérez-Bellmunt A
    Musculoskelet Sci Pract; 2020 Apr; 46():102110. PubMed ID: 31989964
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.