These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35864869)

  • 21. Composites of Graphene and LiFePO
    Wu H; Liu Q; Guo S
    Nanomicro Lett; 2014; 6(4):316-326. PubMed ID: 30464942
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Three-dimensional graphene/amino-functionalized metal-organic framework for simultaneous electrochemical detection of Cd(II), Pb(II), Cu(II), and Hg(II).
    Huo D; Zhang Y; Li N; Ma W; Liu H; Xu G; Li Z; Yang M; Hou C
    Anal Bioanal Chem; 2022 Feb; 414(4):1575-1586. PubMed ID: 34988587
    [TBL] [Abstract][Full Text] [Related]  

  • 23. A sensitive electrochemical sensor using an iron oxide/graphene composite for the simultaneous detection of heavy metal ions.
    Lee S; Oh J; Kim D; Piao Y
    Talanta; 2016 Nov; 160():528-536. PubMed ID: 27591647
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Synthesis and utilisation of graphene for fabrication of electrochemical sensors.
    Lawal AT
    Talanta; 2015 Jan; 131():424-43. PubMed ID: 25281124
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Recent advances in molybdenum disulfide-based electrode materials for electroanalytical applications.
    Vilian ATE; Dinesh B; Kang SM; Krishnan UM; Huh YS; Han YK
    Mikrochim Acta; 2019 Feb; 186(3):203. PubMed ID: 30796594
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Chemically Reduced Graphene Oxide for the Assessment of Food Quality: How the Electrochemical Platform Should Be Tailored to the Application.
    Chng C; Ambrosi A; Chua CK; Pumera M; Bonanni A
    Chemistry; 2017 Feb; 23(8):1930-1936. PubMed ID: 27935185
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Sensitive electrochemical sensor based on poly(l-glutamic acid)/graphene oxide composite material for simultaneous detection of heavy metal ions.
    Yi W; He Z; Fei J; He X
    RSC Adv; 2019 May; 9(30):17325-17334. PubMed ID: 35519871
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Graphene-based electrochemical biosensors for monitoring noncommunicable disease biomarkers.
    Taniselass S; Arshad MKM; Gopinath SCB
    Biosens Bioelectron; 2019 Apr; 130():276-292. PubMed ID: 30771717
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Recent Advances in 3D Graphene Architectures and Their Composites for Energy Storage Applications.
    Wang Z; Gao H; Zhang Q; Liu Y; Chen J; Guo Z
    Small; 2019 Jan; 15(3):e1803858. PubMed ID: 30548381
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Graphene Aerogel-Metal-Organic Framework-Based Electrochemical Method for Simultaneous Detection of Multiple Heavy-Metal Ions.
    Lu M; Deng Y; Luo Y; Lv J; Li T; Xu J; Chen SW; Wang J
    Anal Chem; 2019 Jan; 91(1):888-895. PubMed ID: 30338985
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Three-Dimensional Graphene-Based Composite Hydrogel Materials for Flexible Supercapacitor Electrodes.
    Lai E; Yue X; Ning W; Huang J; Ling X; Lin H
    Front Chem; 2019; 7():660. PubMed ID: 31632952
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Simultaneous Voltammetric Detection of Carbaryl and Paraquat Pesticides on Graphene-Modified Boron-Doped Diamond Electrode.
    Pop A; Manea F; Flueras A; Schoonman J
    Sensors (Basel); 2017 Sep; 17(9):. PubMed ID: 28878151
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Graphene-based electrochemical sensors.
    Wu S; He Q; Tan C; Wang Y; Zhang H
    Small; 2013 Apr; 9(8):1160-72. PubMed ID: 23494883
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Tunable catalytic performance and selectivity of a nanoparticle-graphene composite through finely controlled nanoparticle loading.
    Mondal A; Sinha A; Saha A; Jana NR
    Chem Asian J; 2012 Dec; 7(12):2931-6. PubMed ID: 23047479
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Voltammetric determination of organophosphorus pesticides using a hairpin aptamer immobilized in a graphene oxide-chitosan composite.
    Fu J; Yao Y; An X; Wang G; Guo Y; Sun X; Li F
    Mikrochim Acta; 2019 Dec; 187(1):36. PubMed ID: 31820139
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Graphitic design: prospects of graphene-based nanocomposites for solar energy conversion, storage, and sensing.
    Lightcap IV; Kamat PV
    Acc Chem Res; 2013 Oct; 46(10):2235-43. PubMed ID: 23194290
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Structural design of graphene for use in electrochemical energy storage devices.
    Chen K; Song S; Liu F; Xue D
    Chem Soc Rev; 2015 Oct; 44(17):6230-57. PubMed ID: 26051987
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Electrochemically reduced graphene oxide/Cu-MOF/Pt nanoparticles composites as a high-performance sensing platform for sensitive detection of tetracycline.
    Xu H; Zhang D; Weng X; Wang D; Cai D
    Mikrochim Acta; 2022 Apr; 189(5):201. PubMed ID: 35474041
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Electrochemical supercapacitors from conducting polyaniline-graphene platforms.
    Ashok Kumar N; Baek JB
    Chem Commun (Camb); 2014 Jun; 50(48):6298-308. PubMed ID: 24797734
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Application of Nanotechnology in Analysis and Removal of Heavy Metals in Food and Water Resources.
    Gong Z; Chan HT; Chen Q; Chen H
    Nanomaterials (Basel); 2021 Jul; 11(7):. PubMed ID: 34361182
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 12.