These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

128 related articles for article (PubMed ID: 35865186)

  • 21. Attention Enhancement for Exoskeleton-Assisted Hand Rehabilitation Using Fingertip Haptic Stimulation.
    Li M; Chen J; He G; Cui L; Chen C; Secco EL; Yao W; Xie J; Xu G; Wurdemann H
    Front Robot AI; 2021; 8():602091. PubMed ID: 34095238
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomechanical Heterogeneity of Living Cells: Comparison between Atomic Force Microscopy and Finite Element Simulation.
    Tang G; Galluzzi M; Zhang B; Shen YL; Stadler FJ
    Langmuir; 2019 Jun; 35(23):7578-7587. PubMed ID: 30272980
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Analysis of the contact interactions between fingertips and objects with different surface curvatures.
    Wu JZ; Dong RG
    Proc Inst Mech Eng H; 2005; 219(2):89-103. PubMed ID: 15819480
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Three-dimensional finite element simulations of the mechanical response of the fingertip to static and dynamic compressions.
    Wu JZ; Welcome DE; Dong RG
    Comput Methods Biomech Biomed Engin; 2006 Feb; 9(1):55-63. PubMed ID: 16880157
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Finite element evaluation of the effect of fingertip geometry on contact pressure during flat contact.
    Harih G; Tada M
    Int J Numer Method Biomed Eng; 2015 Jun; 31(6):. PubMed ID: 25720455
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Design of Personalized Wearable Haptic Interfaces to Account for Fingertip Size and shape.
    Malvezzi M; Chinello F; Prattichizzo D; Pacchierotti C
    IEEE Trans Haptics; 2021; 14(2):266-272. PubMed ID: 33905337
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Fluidic Haptic Interface for Mechano-Tactile Feedback.
    Shi G; Palombi A; Lim Z; Astolfi A; Burani A; Campagnini S; Loizzo FGC; Preti ML; Vargas AM; Peperoni E; Oddo CM; Li M; Hardwicke J; Venus M; Homer-Vanniasinkam S; Wurdemann HA
    IEEE Trans Haptics; 2020; 13(1):204-210. PubMed ID: 32012023
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Estimation of human finger tapping forces based on a fingerpad-stiffness model.
    Shima K; Tamura Y; Tsuji T; Kandori A; Yokoe M; Sakoda S
    Annu Int Conf IEEE Eng Med Biol Soc; 2009; 2009():2663-7. PubMed ID: 19963779
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Modeling adhesion forces between deformable bodies by FEM and Hamaker summation.
    Zhou H; Peukert W
    Langmuir; 2008 Feb; 24(4):1459-68. PubMed ID: 18179262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Prosthetic finger phalanges with lifelike skin compliance for low-force social touching interactions.
    Cabibihan JJ; Pradipta R; Ge SS
    J Neuroeng Rehabil; 2011 Mar; 8():16. PubMed ID: 21447188
    [TBL] [Abstract][Full Text] [Related]  

  • 31. 3-D finite-element models of human and monkey fingertips to investigate the mechanics of tactile sense.
    Dandekar K; Raju BI; Srinivasan MA
    J Biomech Eng; 2003 Oct; 125(5):682-91. PubMed ID: 14618927
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A full-field 3D digital image correlation and modelling technique to characterise anterior cruciate ligament mechanics ex vivo.
    Readioff R; Geraghty B; Comerford E; Elsheikh A
    Acta Biomater; 2020 Sep; 113():417-428. PubMed ID: 32652225
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Full-field comparisons between strains predicted by QCT-derived finite element models of the scapula and experimental strains measured by digital volume correlation.
    Kusins J; Knowles N; Ryan M; Dall'Ara E; Ferreira L
    J Biomech; 2020 Dec; 113():110101. PubMed ID: 33171355
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Haptic Manipulation of 3D Scans for Geometric Feature Enhancement.
    Turlapati SH; Accoto D; Campolo D
    Sensors (Basel); 2021 Apr; 21(8):. PubMed ID: 33921508
    [TBL] [Abstract][Full Text] [Related]  

  • 35. How to Measure the Area of Real Contact of Skin on Glass.
    Huloux N; Willemet L; Wiertlewski M
    IEEE Trans Haptics; 2021; 14(2):235-241. PubMed ID: 33909571
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Force response of the fingertip pulp to repeated compression--effects of loading rate, loading angle and anthropometry.
    Serina ER; Mote CD; Rempel D
    J Biomech; 1997 Oct; 30(10):1035-40. PubMed ID: 9391870
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Perception of partial slips under tangential loading of the fingertip.
    Barrea A; Delhaye BP; Lefèvre P; Thonnard JL
    Sci Rep; 2018 May; 8(1):7032. PubMed ID: 29728576
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Dynamic interaction between a fingerpad and a flat surface: experiments and analysis.
    Wu JZ; Dong RG; Smutz WP; Rakheja S
    Med Eng Phys; 2003 Jun; 25(5):397-406. PubMed ID: 12711237
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Viscoelastic characterization of the primate finger pad in vivo by microstep indentation and three-dimensional finite element models for tactile sensation studies.
    Kumar S; Liu G; Schloerb DW; Srinivasan MA
    J Biomech Eng; 2015 Jun; 137(6):061002. PubMed ID: 25751365
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Finite element modeling of living cells for AFM indentation-based biomechanical characterization.
    Liu Y; Mollaeian K; Ren J
    Micron; 2019 Jan; 116():108-115. PubMed ID: 30366196
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 7.