These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 35865210)

  • 1. Self-assembled morphologies of polyelectrolyte-grafted nanoparticles directed by oppositely charged polymer matrices.
    Hao QH; Cheng J; Yang F; Tan HG
    RSC Adv; 2022 Jul; 12(31):19726-19735. PubMed ID: 35865210
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of bidispersity in grafted chain length on grafted chain conformations and potential of mean force between polymer grafted nanoparticles in a homopolymer matrix.
    Nair N; Wentzel N; Jayaraman A
    J Chem Phys; 2011 May; 134(19):194906. PubMed ID: 21599087
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep learning potential of mean force between polymer grafted nanoparticles.
    Gautham SMB; Patra TK
    Soft Matter; 2022 Oct; 18(41):7909-7916. PubMed ID: 36226486
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computer simulation study on the self-assembly of unimodal and bimodal polymer-grafted nanoparticles in a polymer melt.
    Shi R; Qian HJ; Lu ZY
    Phys Chem Chem Phys; 2017 Jun; 19(25):16524-16532. PubMed ID: 28612884
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Environmentally responsive self-assembly of mixed poly(tert-butyl acrylate)-polystyrene brush-grafted silica nanoparticles in selective polymer matrices.
    Tang S; Fox TL; Lo TY; Horton JM; Ho RM; Zhao B; Stewart PL; Zhu L
    Soft Matter; 2015 Jul; 11(27):5501-12. PubMed ID: 26061172
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Charge-Driven Self-Assembly of Polyelectrolyte-Grafted Nanoparticles in Solutions.
    Pothukuchi RP; Prajapat VK; Radhakrishna M
    Langmuir; 2021 Oct; 37(41):12007-12015. PubMed ID: 34617762
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Tuning the Mechanical Properties of Polymer Nanocomposites Filled with Grafted Nanoparticles by Varying the Grafted Chain Length and Flexibility.
    Wang Z; Zheng Z; Liu J; Wu Y; Zhang L
    Polymers (Basel); 2016 Aug; 8(9):. PubMed ID: 30974590
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Electrostatic Adsorption Behaviors of Charged Polymer-Tethered Nanoparticles on Oppositely Charged Surfaces.
    Shen X; Zhang Y; He H; Yi C; Dong W; Ye S; Zheng D; Tao J; Wu Q; Duan X; Nie Z
    Macromol Rapid Commun; 2022 Jul; 43(14):e2200171. PubMed ID: 35503906
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Polyelectrolyte-surfactant complex: phases of self-assembled structures.
    von Ferber C; Löwen H
    Faraday Discuss; 2005; 128():389-405. PubMed ID: 15658786
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Designing Superlattice Structure via Self-Assembly of One-Component Polymer-Grafted Nanoparticles.
    Hou G; Xia X; Liu J; Wang W; Dong M; Zhang L
    J Phys Chem B; 2019 Mar; 123(9):2157-2168. PubMed ID: 30742436
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Viscosity of polyelectrolyte-grafted nanoparticle solutions.
    Medidhi KR; Padmanabhan V
    Soft Matter; 2021 Mar; 17(12):3455-3462. PubMed ID: 33650625
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Hierarchical self-assembly: Self-organized nanostructures in a nematically ordered matrix of self-assembled polymeric chains.
    Mubeena S; Chatterji A
    Phys Rev E Stat Nonlin Soft Matter Phys; 2015 Mar; 91(3):032602. PubMed ID: 25871136
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding asymmetry effects at low grafting density on the self-assembly of polyion grafted nanoparticles.
    Pothukuchi RP; Radhakrishna M
    Phys Chem Chem Phys; 2022 Sep; 24(37):22724-22735. PubMed ID: 36111558
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Molecular dynamics simulation study of the fracture properties of polymer nanocomposites filled with grafted nanoparticles.
    Hu F; Nie Y; Li F; Liu J; Gao Y; Wang W; Zhang L
    Phys Chem Chem Phys; 2019 May; 21(21):11320-11328. PubMed ID: 31106789
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Crazing of nanocomposites with polymer-tethered nanoparticles.
    Meng D; Kumar SK; Ge T; Robbins MO; Grest GS
    J Chem Phys; 2016 Sep; 145(9):094902. PubMed ID: 27609009
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Molecular dynamics simulations of polyelectrolyte brushes: from single chains to bundles of chains.
    Sandberg DJ; Carrillo JM; Dobrynin AV
    Langmuir; 2007 Dec; 23(25):12716-28. PubMed ID: 17973411
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Morphologies of a polyelectrolyte brush grafted onto a cubic colloid in the presence of trivalent ions.
    Tan HG; Xia G; Liu LX; Miao B
    Phys Chem Chem Phys; 2019 Sep; 21(36):20031-20044. PubMed ID: 31478539
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Structure of Polymer-Grafted Nanoparticle Melts.
    Midya J; Rubinstein M; Kumar SK; Nikoubashman A
    ACS Nano; 2020 Nov; 14(11):15505-15516. PubMed ID: 33084300
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effect of monomer sequences on conformations of copolymers grafted on spherical nanoparticles: a Monte Carlo simulation study.
    Seifpour A; Spicer P; Nair N; Jayaraman A
    J Chem Phys; 2010 Apr; 132(16):164901. PubMed ID: 20441304
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Solvation Free Energy of Dilute Grafted (Nano)Particles in Polymer Melts via the Self-Consistent Field Theory.
    Sgouros AP; Revelas CJ; Lakkas AT; Theodorou DN
    J Phys Chem B; 2022 Sep; 126(38):7454-7474. PubMed ID: 36109013
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.