These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

153 related articles for article (PubMed ID: 35865275)

  • 1. Improving a Biogeochemical Model to Simulate Microbial-Mediated Carbon Dynamics in Agricultural Ecosystems.
    Deng J; Frolking S; Bajgain R; Cornell CR; Wagle P; Xiao X; Zhou J; Basara J; Steiner J; Li C
    J Adv Model Earth Syst; 2021 Nov; 13(11):e2021MS002752. PubMed ID: 35865275
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial community shifts reflect losses of native soil carbon with pyrogenic and fresh organic matter additions and are greatest in low-carbon soils.
    Whitman T; DeCiucies S; Hanley K; Enders A; Woolet J; Lehmann J
    Appl Environ Microbiol; 2021 Apr; 87(8):. PubMed ID: 33514520
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Modifying the Soil and Water Assessment Tool to simulate cropland carbon flux: model development and initial evaluation.
    Zhang X; Izaurralde RC; Arnold JG; Williams JR; Srinivasan R
    Sci Total Environ; 2013 Oct; 463-464():810-22. PubMed ID: 23859899
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Three source-partitioning of CO
    Chen Z; Kumar A; Brookes PC; Kuzyakov Y; Luo Y; Xu J
    Sci Total Environ; 2022 Mar; 811():152163. PubMed ID: 34875335
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Modeling the effects of farming management practices on soil organic carbon stock under two tillage practices in a semi-arid region, Morocco.
    Lembaid I; Moussadek R; Mrabet R; Douaik A; Bouhaouss A
    Heliyon; 2021 Jan; 7(1):e05889. PubMed ID: 33437890
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Labile carbon retention compensates for CO2 released by priming in forest soils.
    Qiao N; Schaefer D; Blagodatskaya E; Zou X; Xu X; Kuzyakov Y
    Glob Chang Biol; 2014 Jun; 20(6):1943-54. PubMed ID: 24293210
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modelling the dynamic physical protection of soil organic carbon: Insights into carbon predictions and explanation of the priming effect.
    Luo Z; Baldock J; Wang E
    Glob Chang Biol; 2017 Dec; 23(12):5273-5283. PubMed ID: 28618203
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Understanding the Impacts of Soil, Climate, and Farming Practices on Soil Organic Carbon Sequestration: A Simulation Study in Australia.
    Godde CM; Thorburn PJ; Biggs JS; Meier EA
    Front Plant Sci; 2016; 7():661. PubMed ID: 27242862
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Enhanced decomposition of stable soil organic carbon and microbial catabolic potentials by long-term field warming.
    Feng W; Liang J; Hale LE; Jung CG; Chen J; Zhou J; Xu M; Yuan M; Wu L; Bracho R; Pegoraro E; Schuur EAG; Luo Y
    Glob Chang Biol; 2017 Nov; 23(11):4765-4776. PubMed ID: 28597589
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Microbial dynamics and soil physicochemical properties explain large-scale variations in soil organic carbon.
    Zhang H; Goll DS; Wang YP; Ciais P; Wieder WR; Abramoff R; Huang Y; Guenet B; Prescher AK; Viscarra Rossel RA; Barré P; Chenu C; Zhou G; Tang X
    Glob Chang Biol; 2020 Apr; 26(4):2668-2685. PubMed ID: 31926046
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Monitoring temperature sensitivity of soil organic carbon decomposition under maize-wheat cropping systems in semi-arid India.
    Sandeep S; Manjaiah KM; Mayadevi MR; Singh AK
    Environ Monit Assess; 2016 Aug; 188(8):451. PubMed ID: 27387189
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Networking our science to characterize the state, vulnerabilities, and management opportunities of soil organic matter.
    Harden JW; Hugelius G; Ahlström A; Blankinship JC; Bond-Lamberty B; Lawrence CR; Loisel J; Malhotra A; Jackson RB; Ogle S; Phillips C; Ryals R; Todd-Brown K; Vargas R; Vergara SE; Cotrufo MF; Keiluweit M; Heckman KA; Crow SE; Silver WL; DeLonge M; Nave LE
    Glob Chang Biol; 2018 Feb; 24(2):e705-e718. PubMed ID: 28981192
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Large-scale integrated assessment of soil carbon and organic matter-related nitrogen fluxes in Saxony (Germany).
    Witing F; Gebel M; Kurzer HJ; Friese H; Franko U
    J Environ Manage; 2019 May; 237():272-280. PubMed ID: 30798046
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes of soil organic carbon in an intensively cultivated agricultural region: a denitrification-decomposition (DNDC) modelling approach.
    Liu Y; Yu Z; Chen J; Zhang F; Doluschitz R; Axmacher JC
    Sci Total Environ; 2006 Dec; 372(1):203-14. PubMed ID: 17081590
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biological mechanisms may contribute to soil carbon saturation patterns.
    Craig ME; Mayes MA; Sulman BN; Walker AP
    Glob Chang Biol; 2021 Jun; 27(12):2633-2644. PubMed ID: 33668074
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Plant-mediated effects of elevated CO
    Hu Z; Chen X; Yao J; Zhu C; Zhu J; Liu M
    New Phytol; 2020 Mar; 225(6):2368-2379. PubMed ID: 31667850
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Significance of microbial asynchronous anabolism to soil carbon dynamics driven by litter inputs.
    Fan Z; Liang C
    Sci Rep; 2015 Apr; 5():9575. PubMed ID: 25849864
    [TBL] [Abstract][Full Text] [