These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
225 related articles for article (PubMed ID: 35865316)
1. MicroRNA-21: A Critical Pathogenic Factor of Diabetic Nephropathy. Liu S; Wu W; Liao J; Tang F; Gao G; Peng J; Fu X; Zhan Y; Chen Z; Xu W; Zhao S Front Endocrinol (Lausanne); 2022; 13():895010. PubMed ID: 35865316 [TBL] [Abstract][Full Text] [Related]
2. Roles of microRNA-192 in diabetic nephropathy: the clinical applications and mechanisms of action. Wan X; Liao J; Lai H; Zhang S; Cui J; Chen C Front Endocrinol (Lausanne); 2023; 14():1179161. PubMed ID: 37396169 [TBL] [Abstract][Full Text] [Related]
3. Ski-related novel protein suppresses the development of diabetic nephropathy by modulating transforming growth factor-β signaling and microRNA-21 expression. Wang Y; Liu L; Peng W; Liu H; Liang L; Zhang X; Mao Y; Zhou X; Shi M; Xiao Y; Zhang F; Zhang Y; Liu L; Yan R; Guo B J Cell Physiol; 2019 Aug; 234(10):17925-17936. PubMed ID: 30847937 [TBL] [Abstract][Full Text] [Related]
4. miR-21 promotes renal fibrosis in diabetic nephropathy by targeting PTEN and SMAD7. McClelland AD; Herman-Edelstein M; Komers R; Jha JC; Winbanks CE; Hagiwara S; Gregorevic P; Kantharidis P; Cooper ME Clin Sci (Lond); 2015 Dec; 129(12):1237-49. PubMed ID: 26415649 [TBL] [Abstract][Full Text] [Related]
5. miR-21 overexpression enhances TGF-β1-induced epithelial-to-mesenchymal transition by target smad7 and aggravates renal damage in diabetic nephropathy. Wang JY; Gao YB; Zhang N; Zou DW; Wang P; Zhu ZY; Li JY; Zhou SN; Wang SC; Wang YY; Yang JK Mol Cell Endocrinol; 2014 Jul; 392(1-2):163-72. PubMed ID: 24887517 [TBL] [Abstract][Full Text] [Related]
6. BMP-7 inhibits renal fibrosis in diabetic nephropathy via miR-21 downregulation. Liu L; Wang Y; Yan R; Liang L; Zhou X; Liu H; Zhang X; Mao Y; Peng W; Xiao Y; Zhang F; Liu L; Shi M; Guo B Life Sci; 2019 Dec; 238():116957. PubMed ID: 31655195 [TBL] [Abstract][Full Text] [Related]
7. Transforming growth factor-β/Smad signalling in diabetic nephropathy. Lan HY Clin Exp Pharmacol Physiol; 2012 Aug; 39(8):731-8. PubMed ID: 22211842 [TBL] [Abstract][Full Text] [Related]
8. [The Role of TGF-β1/SMAD in Diabetic Nephropathy: Mechanisms and Research Development]. Wang Y; Guo J; Shao B; Chen H; Lan H Sichuan Da Xue Xue Bao Yi Xue Ban; 2023 Nov; 54(6):1065-1073. PubMed ID: 38162063 [TBL] [Abstract][Full Text] [Related]
9. Identification of biomarkers and prediction of upstream miRNAs in diabetic nephropathy. Yin D; Guo Z; Zhang X Front Endocrinol (Lausanne); 2023; 14():1144331. PubMed ID: 36896170 [TBL] [Abstract][Full Text] [Related]
11. TGF-Beta as a Master Regulator of Diabetic Nephropathy. Wang L; Wang HL; Liu TT; Lan HY Int J Mol Sci; 2021 Jul; 22(15):. PubMed ID: 34360646 [TBL] [Abstract][Full Text] [Related]
12. MicroRNA-140-5p ameliorates the high glucose-induced apoptosis and inflammation through suppressing TLR4/NF-κB signaling pathway in human renal tubular epithelial cells. Su J; Ren J; Chen H; Liu B Biosci Rep; 2020 Mar; 40(3):. PubMed ID: 32073611 [TBL] [Abstract][Full Text] [Related]
13. Downregulation of miR-17 suppresses TGF-β1-mediated renal fibrosis through targeting Smad7. Fu H; Chu D; Geng X Mol Cell Biochem; 2021 Aug; 476(8):3051-3064. PubMed ID: 33797702 [TBL] [Abstract][Full Text] [Related]
14. MiR-130b increases fibrosis of HMC cells by regulating the TGF-β1 pathway in diabetic nephropathy. Ma Y; Shi J; Wang F; Li S; Wang J; Zhu C; Li L; Lu H; Li C; Yan J; Zhang X; Jiang H J Cell Biochem; 2019 Mar; 120(3):4044-4056. PubMed ID: 30260005 [TBL] [Abstract][Full Text] [Related]
15. MicroRNA-27a promotes renal tubulointerstitial fibrosis via suppressing PPARγ pathway in diabetic nephropathy. Hou X; Tian J; Geng J; Li X; Tang X; Zhang J; Bai X Oncotarget; 2016 Jul; 7(30):47760-47776. PubMed ID: 27351287 [TBL] [Abstract][Full Text] [Related]
16. Transforming growth factor β1 (TGF-β1) enhances expression of profibrotic genes through a novel signaling cascade and microRNAs in renal mesangial cells. Castro NE; Kato M; Park JT; Natarajan R J Biol Chem; 2014 Oct; 289(42):29001-13. PubMed ID: 25204661 [TBL] [Abstract][Full Text] [Related]
17. Silencing of long noncoding RNA XIST protects against renal interstitial fibrosis in diabetic nephropathy via microRNA-93-5p-mediated inhibition of CDKN1A. Yang J; Shen Y; Yang X; Long Y; Chen S; Lin X; Dong R; Yuan J Am J Physiol Renal Physiol; 2019 Nov; 317(5):F1350-F1358. PubMed ID: 31545928 [TBL] [Abstract][Full Text] [Related]
18. High glucose down-regulates microRNA-181a-5p to increase pro-fibrotic gene expression by targeting early growth response factor 1 in HK-2 cells. Xu P; Guan MP; Bi JG; Wang D; Zheng ZJ; Xue YM Cell Signal; 2017 Feb; 31():96-104. PubMed ID: 28077323 [TBL] [Abstract][Full Text] [Related]
19. Transforming growth factor-β-induced cross talk between p53 and a microRNA in the pathogenesis of diabetic nephropathy. Deshpande SD; Putta S; Wang M; Lai JY; Bitzer M; Nelson RG; Lanting LL; Kato M; Natarajan R Diabetes; 2013 Sep; 62(9):3151-62. PubMed ID: 23649518 [TBL] [Abstract][Full Text] [Related]
20. Adipose mesenchymal stem cell-derived extracellular vesicles containing microRNA-26a-5p target TLR4 and protect against diabetic nephropathy. Duan Y; Luo Q; Wang Y; Ma Y; Chen F; Zhu X; Shi J J Biol Chem; 2020 Sep; 295(37):12868-12884. PubMed ID: 32580945 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]