These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

177 related articles for article (PubMed ID: 3586570)

  • 21. Inspiratory effort sensation to added resistive loading in patients with obstructive sleep apnea.
    Tun Y; Hida W; Okabe S; Kikuchi Y; Kurosawa H; Tabata M; Shirato K
    Chest; 2000 Nov; 118(5):1332-8. PubMed ID: 11083683
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Neural drive to nasal dilator muscles: influence of exercise intensity and oronasal flow partitioning.
    Fregosi RF; Lansing RW
    J Appl Physiol (1985); 1995 Oct; 79(4):1330-7. PubMed ID: 8567580
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Physiology of sleep disordered breathing.
    Woodson BT; Franco R
    Otolaryngol Clin North Am; 2007 Aug; 40(4):691-711. PubMed ID: 17606019
    [TBL] [Abstract][Full Text] [Related]  

  • 24. [Physiopathology of mouth breathing. Snoring and apnea].
    Goffart Y
    Acta Otorhinolaryngol Belg; 1993; 47(2):157-66. PubMed ID: 8317211
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Nasal airway impairment: the oral response in cleft palate patients.
    Warren DW; Hairfield WM; Dalston ET
    Am J Orthod Dentofacial Orthop; 1991 Apr; 99(4):346-53. PubMed ID: 2008894
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Dynamic behaviour of the soft palate during nasal positive pressure ventilation under anaesthesia and paralysis: comparison between patients with and without obstructive sleep-disordered breathing.
    Okuyama M; Kato S; Sato S; Okazaki J; Kitamura Y; Ishikawa T; Sato Y; Isono S
    Br J Anaesth; 2018 Jan; 120(1):181-187. PubMed ID: 29397128
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Breathing route and ventilatory responses to inspiratory resistive loading in humans.
    Nishino T; Kochi T
    Am J Respir Crit Care Med; 1994 Sep; 150(3):742-6. PubMed ID: 8087346
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Supraglottic airway pressure-flow relationships during oronasal airflow partitioning in dogs.
    Amis TC; O'Neill N; Van der Touw T; Tully A; Brancatisano A
    J Appl Physiol (1985); 1996 Nov; 81(5):1958-64. PubMed ID: 8941516
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Increased nasal resistance induced by the pressure-flow technique and its effect on pressure and airflow during speech.
    Liu H; Warren DW; Dalston RM
    Cleft Palate Craniofac J; 1991 Jul; 28(3):261-5; discussion 265-6. PubMed ID: 1911813
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Electromyographic muscle EMG activity in mouth and nasal breathing children.
    Ribeiro EC; Marchiori SC; da Silva AM
    Cranio; 2004 Apr; 22(2):145-50. PubMed ID: 15134415
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A quantitative technique for assessing nasal airway impairment.
    Warren DW
    Am J Orthod; 1984 Oct; 86(4):306-14. PubMed ID: 6592979
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Impact of adenotonsilectomy on nasal airflow and pulmonary blood pressure in mouth breathing children.
    Ramos VM; Nader CM; Meira ZM; Capanema FD; Franco LP; Tinano MM; Anjos CP; Nunes FB; Oliveira IS; Guimarães RE; Becker HMG
    Int J Pediatr Otorhinolaryngol; 2019 Oct; 125():82-86. PubMed ID: 31271972
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Quantitative evaluation of nasal airflow in relation to facial morphology.
    Vig PS; Sarver DM; Hall DJ; Warren DW
    Am J Orthod; 1981 Mar; 79(3):263-72. PubMed ID: 6938136
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Partitioning of inhaled ventilation between the nasal and oral routes during sleep in normal subjects.
    Fitzpatrick MF; Driver HS; Chatha N; Voduc N; Girard AM
    J Appl Physiol (1985); 2003 Mar; 94(3):883-90. PubMed ID: 12433860
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Oronasal distribution of ventilation at different ages.
    James DS; Lambert WE; Mermier CM; Stidley CA; Chick TW; Samet JM
    Arch Environ Health; 1997; 52(2):118-23. PubMed ID: 9124871
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Evaluation of upper airway obstruction in Class II children with fluid-mechanical simulation.
    Iwasaki T; Saitoh I; Takemoto Y; Inada E; Kanomi R; Hayasaki H; Yamasaki Y
    Am J Orthod Dentofacial Orthop; 2011 Feb; 139(2):e135-45. PubMed ID: 21300224
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Effect of a nasal dilatator on nasal patency during normal and forced nasal breathing.
    Vermoen CJ; Verbraak AF; Bogaard JM
    Int J Sports Med; 1998 Feb; 19(2):109-13. PubMed ID: 9562219
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mechanisms of genioglossus responses to inspiratory resistive load in rabbits.
    Aleksandrova NP; Goloubeva EV; Isaev GG
    Acta Physiol Scand; 2002 Jul; 175(3):253-60. PubMed ID: 12100365
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Hypernasality and velopharyngeal impairment.
    Warren DW; Dalston RM; Mayo R
    Cleft Palate Craniofac J; 1994 Jul; 31(4):257-62. PubMed ID: 7918520
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Acoustic rhinometry assessment of the nasal cycle in neonates.
    Baczek M; Hassmann E; Alifier M; Iwaszko-Krawczuk W
    Acta Otolaryngol; 2001 Jan; 121(2):301-4. PubMed ID: 11349801
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.