These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

156 related articles for article (PubMed ID: 35865930)

  • 1. Cyanobacteria as Candidates to Support Mars Colonization: Growth and Biofertilization Potential Using Mars Regolith as a Resource.
    Macário IPE; Veloso T; Frankenbach S; Serôdio J; Passos H; Sousa C; Gonçalves FJM; Ventura SPM; Pereira JL
    Front Microbiol; 2022; 13():840098. PubMed ID: 35865930
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Microbial Growth in Martian Soil Simulants Under Terrestrial Conditions: Guiding the Search for Life on Mars.
    Naz N; Liu D; Harandi BF; Kounaves SP
    Astrobiology; 2022 Oct; 22(10):1210-1221. PubMed ID: 36000998
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Cultivation and nutritional characteristics of Chlorella vulgaris cultivated using Martian regolith and synthetic urine.
    Casula M; Fais G; Manis C; Scano P; Verseux C; Concas A; Cao G; Caboni P
    Life Sci Space Res (Amst); 2024 Aug; 42():108-116. PubMed ID: 39067982
    [TBL] [Abstract][Full Text] [Related]  

  • 4. On the growth dynamics of the cyanobacterium Anabaena sp. PCC 7938 in Martian regolith.
    Ramalho TP; Chopin G; Salman L; Baumgartner V; Heinicke C; Verseux C
    NPJ Microgravity; 2022 Oct; 8(1):43. PubMed ID: 36289210
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Intercropping on Mars: A promising system to optimise fresh food production in future martian colonies.
    Gonçalves R; Wamelink GWW; van der Putten P; Evers JB
    PLoS One; 2024; 19(5):e0302149. PubMed ID: 38691526
    [TBL] [Abstract][Full Text] [Related]  

  • 6. An Oxygen Delivery Polymer Enhances Seed Germination in a Martian-like Environment.
    MacDonald JG; Rodriguez K; Quirk S
    Astrobiology; 2020 Jul; 20(7):846-863. PubMed ID: 32196355
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A molecular study of Italian ryegrass grown on Martian regolith simulant.
    Berni R; Leclercq CC; Roux P; Hausman JF; Renaut J; Guerriero G
    Sci Total Environ; 2023 Jan; 854():158774. PubMed ID: 36108852
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Soil fertility interactions with Sinorhizobium-legume symbiosis in a simulated Martian regolith; effects on nitrogen content and plant health.
    Harris F; Dobbs J; Atkins D; Ippolito JA; Stewart JE
    PLoS One; 2021; 16(9):e0257053. PubMed ID: 34587163
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Farming on Mars: Treatment of basaltic regolith soil and briny water simulants sustains plant growth.
    Kasiviswanathan P; Swanner ED; Halverson LJ; Vijayapalani P
    PLoS One; 2022; 17(8):e0272209. PubMed ID: 35976812
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Supercritical Carbon Dioxide Extraction of Coronene in the Presence of Perchlorate for In Situ Chemical Analysis of Martian Regolith.
    McCaig HC; Stockton A; Crilly C; Chung S; Kanik I; Lin Y; Zhong F
    Astrobiology; 2016 Sep; 16(9):703-14. PubMed ID: 27623199
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Microbial growth in actual martian regolith in the form of Mars meteorite EETA79001.
    Naz N; Harandi BF; Newmark J; Kounaves SP
    Commun Earth Environ; 2023; 4(1):381. PubMed ID: 38665180
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Screening the Survival of Cyanobacteria Under Perchlorate Stress. Potential Implications for Mars
    Rzymski P; Poniedziałek B; Hippmann N; Kaczmarek Ł
    Astrobiology; 2022 Jun; 22(6):672-684. PubMed ID: 35196144
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Selection of
    Ramalho TP; Chopin G; Pérez-Carrascal OM; Tromas N; Verseux C
    Appl Environ Microbiol; 2022 Aug; 88(15):e0059422. PubMed ID: 35862672
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Influence of Martian regolith analogs on the activity and growth of methanogenic archaea, with special regard to long-term desiccation.
    Schirmack J; Alawi M; Wagner D
    Front Microbiol; 2015; 6():210. PubMed ID: 25852668
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of microalgal ligninolytic enzymes in industrial dye decolorization.
    Abd Ellatif S; El-Sheekh MM; Senousy HH
    Int J Phytoremediation; 2021; 23(1):41-52. PubMed ID: 32649225
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Desert Cyanobacterium under Simulated Mars-like Conditions in Low Earth Orbit: Implications for the Habitability of Mars.
    Billi D; Verseux C; Fagliarone C; Napoli A; Baqué M; de Vera JP
    Astrobiology; 2019 Feb; 19(2):158-169. PubMed ID: 30742497
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Geo-mineralogical characterisation of Mars simulant MMS-1 and appraisal of substrate physico-chemical properties and crop performance obtained with variable green compost amendment rates.
    Caporale AG; Vingiani S; Palladino M; El-Nakhel C; Duri LG; Pannico A; Rouphael Y; De Pascale S; Adamo P
    Sci Total Environ; 2020 Jun; 720():137543. PubMed ID: 32135285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Potential of
    Kaksonen AH; Deng X; Morris C; Khaleque HN; Zea L; Gumulya Y
    Microorganisms; 2021 Nov; 9(12):. PubMed ID: 34946018
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Cultivation of
    Fais G; Casula M; Sidorowicz A; Manca A; Margarita V; Fiori PL; Pantaleo A; Caboni P; Cao G; Concas A
    Life (Basel); 2024 Feb; 14(2):. PubMed ID: 38398760
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Cosmogenic and nucleogenic isotopic changes in Mars: their rates and implications to the evolutionary history of Martian surface.
    Lal D
    Geochim Cosmochim Acta; 1993 Oct; 57(19):4627-37. PubMed ID: 11539580
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.