These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
24. The ClpX and ClpP2 Orthologs of Chlamydia trachomatis Perform Discrete and Essential Functions in Organism Growth and Development. Wood NA; Blocker AM; Seleem MA; Conda-Sheridan M; Fisher DJ; Ouellette SP mBio; 2020 Sep; 11(5):. PubMed ID: 32873765 [No Abstract] [Full Text] [Related]
25. Plant mitochondria contain proteolytic and regulatory subunits of the ATP-dependent Clp protease. Halperin T; Zheng B; Itzhaki H; Clarke AK; Adam Z Plant Mol Biol; 2001 Mar; 45(4):461-8. PubMed ID: 11352464 [TBL] [Abstract][Full Text] [Related]
26. ClpP-dependent degradation of PopR allows tightly regulated expression of the clpP3 clpP4 operon in Streptomyces lividans. Viala J; Mazodier P Mol Microbiol; 2002 May; 44(3):633-43. PubMed ID: 11994147 [TBL] [Abstract][Full Text] [Related]
27. The ATP-dependent Clp protease is essential for acclimation to UV-B and low temperature in the cyanobacterium Synechococcus. Porankiewicz J; Schelin J; Clarke AK Mol Microbiol; 1998 Jul; 29(1):275-83. PubMed ID: 9701820 [TBL] [Abstract][Full Text] [Related]
28. Validation of the essential ClpP protease in Mycobacterium tuberculosis as a novel drug target. Ollinger J; O'Malley T; Kesicki EA; Odingo J; Parish T J Bacteriol; 2012 Feb; 194(3):663-8. PubMed ID: 22123255 [TBL] [Abstract][Full Text] [Related]
29. Initial Characterization of the Two ClpP Paralogs of Wood NA; Chung KY; Blocker AM; Rodrigues de Almeida N; Conda-Sheridan M; Fisher DJ; Ouellette SP J Bacteriol; 2019 Jan; 201(2):. PubMed ID: 30396899 [TBL] [Abstract][Full Text] [Related]
30. Characterization of the Sinorhizobium meliloti HslUV and ClpXP Protease Systems in Free-Living and Symbiotic States. Ogden AJ; McAleer JM; Kahn ML J Bacteriol; 2019 Apr; 201(7):. PubMed ID: 30670545 [TBL] [Abstract][Full Text] [Related]
31. Global Inventory of ClpP- and ClpX-Regulated Proteins in Kirsch VC; Fetzer C; Sieber SA J Proteome Res; 2021 Jan; 20(1):867-879. PubMed ID: 33210542 [No Abstract] [Full Text] [Related]
33. Comparative proteomic analysis of Listeria monocytogenes strains F2365 and EGD. Donaldson JR; Nanduri B; Burgess SC; Lawrence ML Appl Environ Microbiol; 2009 Jan; 75(2):366-73. PubMed ID: 19028911 [TBL] [Abstract][Full Text] [Related]
34. Cryo-EM structure of the ClpXP protein degradation machinery. Gatsogiannis C; Balogh D; Merino F; Sieber SA; Raunser S Nat Struct Mol Biol; 2019 Oct; 26(10):946-954. PubMed ID: 31582852 [TBL] [Abstract][Full Text] [Related]
35. Alteration of the synthesis of the Clp ATP-dependent protease affects morphological and physiological differentiation in Streptomyces. de Crécy-Lagard V; Servant-Moisson P; Viala J; Grandvalet C; Mazodier P Mol Microbiol; 1999 May; 32(3):505-17. PubMed ID: 10320574 [TBL] [Abstract][Full Text] [Related]
36. Substrate delivery by the AAA+ ClpX and ClpC1 unfoldases activates the mycobacterial ClpP1P2 peptidase. Schmitz KR; Sauer RT Mol Microbiol; 2014 Aug; 93(4):617-28. PubMed ID: 24976069 [TBL] [Abstract][Full Text] [Related]
37. The ATPase ClpX is conditionally involved in the morphological differentiation of Streptomyces lividans. Viala J; Mazodier P Mol Genet Genomics; 2003 Feb; 268(5):563-9. PubMed ID: 12589431 [TBL] [Abstract][Full Text] [Related]
38. Role of flhA and motA in growth of Listeria monocytogenes at low temperatures. Mattila M; Lindström M; Somervuo P; Markkula A; Korkeala H Int J Food Microbiol; 2011 Aug; 148(3):177-83. PubMed ID: 21683466 [TBL] [Abstract][Full Text] [Related]
39. Comparative analysis of the exoproteomes of Listeria monocytogenes strains grown at low temperatures. Cabrita P; Batista S; Machado H; Moes S; Jenö P; Manadas B; Trigo MJ; Monteiro S; Ferreira RB; Brito L Foodborne Pathog Dis; 2013 May; 10(5):428-34. PubMed ID: 23531123 [TBL] [Abstract][Full Text] [Related]
40. Increased Isoprenoid Quinone Concentration Modulates Membrane Fluidity in Listeria monocytogenes at Low Growth Temperatures. Seel W; Flegler A; Zunabovic-Pichler M; Lipski A J Bacteriol; 2018 Jul; 200(13):. PubMed ID: 29661862 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]