These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

178 related articles for article (PubMed ID: 35866430)

  • 1. Soy proteins as vehicles for enhanced bioaccessibility and cholesterol-lowering activity of phytosterols.
    Liu L; Xu Y; Chen F; Zhang S; Li L; Ban Z
    J Sci Food Agric; 2023 Jan; 103(1):205-212. PubMed ID: 35866430
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Soy protein isolate as a nanocarrier for enhanced water dispersibility, stability and bioaccessibility of β-carotene.
    Deng XX; Zhang N; Tang CH
    J Sci Food Agric; 2017 May; 97(7):2230-2237. PubMed ID: 27616430
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chitosan-coated soybean protein isolate/lecithin nanoparticles for enhancing the stability and bioaccessibility of phytosterol.
    Cheng M; Tao Y; Wang C; Li A
    J Sci Food Agric; 2024 May; 104(7):4242-4250. PubMed ID: 38288644
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Food protein-based phytosterol nanoparticles: fabrication and characterization.
    Cao WJ; Ou SY; Lin WF; Tang CH
    Food Funct; 2016 Sep; 7(9):3973-80. PubMed ID: 27549740
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Nanocomplexation between curcumin and soy protein isolate: influence on curcumin stability/bioaccessibility and in vitro protein digestibility.
    Chen FP; Li BS; Tang CH
    J Agric Food Chem; 2015 Apr; 63(13):3559-69. PubMed ID: 25779681
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Improved in vitro bioaccessibility of quercetin by nanocomplexation with high-intensity ultrasound treated soy protein isolate.
    Lin J; Yong KYA; Zhou Y; Wang Y; Zhou W
    Food Chem; 2023 Apr; 406():135004. PubMed ID: 36481514
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Water-Dispersible Phytosterol Nanoparticles: Preparation, Characterization, and
    Li A; Zhu A; Kong D; Wang C; Liu S; Zhou L; Cheng M
    Front Nutr; 2021; 8():793009. PubMed ID: 35096938
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Characteristics and structure of a soy protein isolate-lutein nanocomplex produced via high-pressure homogenization.
    Yang H; Li L; Xie C; He M; Guo Z; Zhao S; Teng F; Li Y
    J Sci Food Agric; 2022 Sep; 102(12):5411-5421. PubMed ID: 35338503
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Dietary proteins as excipient ingredients for improving the solubility, stability, and bioaccessibility of quercetin: Role of intermolecular interactions.
    Liao L; Julian McClements D; Chen X; Zhu Y; Liu Y; Liang R; Zou L; Liu W
    Food Res Int; 2022 Nov; 161():111806. PubMed ID: 36192884
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro bioaccessibility of novel low-crystallinity phytosterol nanoparticles in non-fat and regular-fat foods.
    Ubeyitogullari A; Ciftci ON
    Food Res Int; 2019 Sep; 123():27-35. PubMed ID: 31284977
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Nanocomplexation between thymol and soy protein isolate and its improvements on stability and antibacterial properties of thymol.
    Chen FP; Kong NQ; Wang L; Luo Z; Yin J; Chen Y
    Food Chem; 2021 Jan; 334():127594. PubMed ID: 32707365
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Enhancement of physical stability and bioaccessibility of tangeretin by soy protein isolate addition.
    Wan J; Li D; Song R; Shah BR; Li B; Li Y
    Food Chem; 2017 Apr; 221():760-770. PubMed ID: 27979270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Ellagic acid-loaded soy protein isolate self-assembled particles: Characterization, stability, and antioxidant activity.
    Feng Y; Wu K; Yu G; Yi F; Zhu G
    J Food Sci; 2024 Jan; 89(1):64-80. PubMed ID: 37983835
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of food formulation on bioavailability of phytosterols: phytosterol structures, delivery carriers, and food matrices.
    Wang T; Ma C; Hu Y; Guo S; Bai G; Yang G; Yang R
    Food Funct; 2023 Jun; 14(12):5465-5477. PubMed ID: 37232095
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The characterization and stability of the soy protein isolate/1-Octacosanol nanocomplex.
    Li D; Li X; Wu G; Li P; Zhang H; Qi X; Wang L; Qian H
    Food Chem; 2019 Nov; 297():124766. PubMed ID: 31253308
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Encapsulation of rutin in protein nanoparticles by pH-driven method: impact of rutin solubility and mechanisms.
    Luo S; Fu Y; Ye J; Liu C
    J Sci Food Agric; 2024 Feb; 104(3):1804-1812. PubMed ID: 37867464
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gel properties of transglutaminase-induced soy protein isolate-polyphenol complex: influence of epigallocatechin-3-gallate.
    Xu J; Guo S; Li X; Jiang S; Zhong X; Zheng Z
    J Sci Food Agric; 2021 Jul; 101(9):3870-3879. PubMed ID: 33336789
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Development of high-internal-phase emulsions stabilized by soy protein isolate-dextran complex for the delivery of quercetin.
    Du X; Hu M; Liu G; Yan S; Qi B; Zhang S; Huang Y; Li Y; Chen H; Zhu X
    J Sci Food Agric; 2022 Nov; 102(14):6273-6284. PubMed ID: 35510347
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of transglutaminase glycosylated soy protein isolate on its structure and interfacial properties.
    Zhang A; Cui Q; Yu Z; Wang X; Zhao XH
    J Sci Food Agric; 2021 Sep; 101(12):5097-5105. PubMed ID: 33576008
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The influence of ionic strength on the characteristics of heat-induced soy protein aggregate nanoparticles and the freeze-thaw stability of the resultant Pickering emulsions.
    Zhu XF; Zheng J; Liu F; Qiu CY; Lin WF; Tang CH
    Food Funct; 2017 Aug; 8(8):2974-2981. PubMed ID: 28745770
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.