These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

561 related articles for article (PubMed ID: 35866492)

  • 1. A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images.
    Qu X; Lu H; Tang W; Wang S; Zheng D; Hou Y; Jiang J
    Med Phys; 2022 Sep; 49(9):5787-5798. PubMed ID: 35866492
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fus2Net: a novel Convolutional Neural Network for classification of benign and malignant breast tumor in ultrasound images.
    Ma H; Tian R; Li H; Sun H; Lu G; Liu R; Wang Z
    Biomed Eng Online; 2021 Nov; 20(1):112. PubMed ID: 34794443
    [TBL] [Abstract][Full Text] [Related]  

  • 3. An attention-supervised full-resolution residual network for the segmentation of breast ultrasound images.
    Qu X; Shi Y; Hou Y; Jiang J
    Med Phys; 2020 Nov; 47(11):5702-5714. PubMed ID: 32964449
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Squeeze-and-excitation-attention-based mobile vision transformer for grading recognition of bladder prolapse in pelvic MRI images.
    Zhu S; Chen G; Chen H; Lu Y; Wu M; Zheng B; Liu D; Qian C; Chen Y
    Med Phys; 2024 Aug; 51(8):5236-5249. PubMed ID: 38767532
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Deep learning-based immunohistochemical estimation of breast cancer via ultrasound image applications.
    Yan D; Zhao Z; Duan J; Qu J; Shi L; Wang Q; Zhang H
    Front Oncol; 2023; 13():1263685. PubMed ID: 38264739
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A deep supervised transformer U-shaped full-resolution residual network for the segmentation of breast ultrasound image.
    Zhou J; Hou Z; Lu H; Wang W; Zhao W; Wang Z; Zheng D; Wang S; Tang W; Qu X
    Med Phys; 2023 Dec; 50(12):7513-7524. PubMed ID: 37816131
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Distilling Knowledge From an Ensemble of Vision Transformers for Improved Classification of Breast Ultrasound.
    Zhou G; Mosadegh B
    Acad Radiol; 2024 Jan; 31(1):104-120. PubMed ID: 37666747
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Classification of multi-feature fusion ultrasound images of breast tumor within category 4 using convolutional neural networks.
    Xu P; Zhao J; Wan M; Song Q; Su Q; Wang D
    Med Phys; 2024 Jun; 51(6):4243-4257. PubMed ID: 38436433
    [TBL] [Abstract][Full Text] [Related]  

  • 9. BUS-Set: A benchmark for quantitative evaluation of breast ultrasound segmentation networks with public datasets.
    Thomas C; Byra M; Marti R; Yap MH; Zwiggelaar R
    Med Phys; 2023 May; 50(5):3223-3243. PubMed ID: 36794706
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spatial and geometric learning for classification of breast tumors from multi-center ultrasound images: a hybrid learning approach.
    Ru J; Zhu Z; Shi J
    BMC Med Imaging; 2024 Jun; 24(1):133. PubMed ID: 38840240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. CAM-QUS guided self-tuning modular CNNs with multi-loss functions for fully automated breast lesion classification in ultrasound images.
    Tasnim J; Hasan MK
    Phys Med Biol; 2023 Dec; 69(1):. PubMed ID: 38056017
    [No Abstract]   [Full Text] [Related]  

  • 12. An Edge-Based Selection Method for Improving Regions-of-Interest Localizations Obtained Using Multiple Deep Learning Object-Detection Models in Breast Ultrasound Images.
    Daoud MI; Al-Ali A; Alazrai R; Al-Najar MS; Alsaify BA; Ali MZ; Alouneh S
    Sensors (Basel); 2022 Sep; 22(18):. PubMed ID: 36146070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Vision Transformers for Classification of Breast Ultrasound Images.
    Gheflati B; Rivaz H
    Annu Int Conf IEEE Eng Med Biol Soc; 2022 Jul; 2022():480-483. PubMed ID: 36086171
    [TBL] [Abstract][Full Text] [Related]  

  • 14. FMRNet: A fused network of multiple tumoral regions for breast tumor classification with ultrasound images.
    Cui W; Peng Y; Yuan G; Cao W; Cao Y; Lu Z; Ni X; Yan Z; Zheng J
    Med Phys; 2022 Jan; 49(1):144-157. PubMed ID: 34766623
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gray-to-color image conversion in the classification of breast lesions on ultrasound using pre-trained deep neural networks.
    Gómez-Flores W; Pereira WCA
    Med Biol Eng Comput; 2023 Dec; 61(12):3193-3207. PubMed ID: 37713158
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Breast Cancer Classification in Automated Breast Ultrasound Using Multiview Convolutional Neural Network with Transfer Learning.
    Wang Y; Choi EJ; Choi Y; Zhang H; Jin GY; Ko SB
    Ultrasound Med Biol; 2020 May; 46(5):1119-1132. PubMed ID: 32059918
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Automatic tumor segmentation in breast ultrasound images using a dilated fully convolutional network combined with an active contour model.
    Hu Y; Guo Y; Wang Y; Yu J; Li J; Zhou S; Chang C
    Med Phys; 2019 Jan; 46(1):215-228. PubMed ID: 30374980
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A comparative study of pre-trained convolutional neural networks for semantic segmentation of breast tumors in ultrasound.
    Gómez-Flores W; Coelho de Albuquerque Pereira W
    Comput Biol Med; 2020 Nov; 126():104036. PubMed ID: 33059238
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Deep Learning-Based Approach for Cervical Cancer Classification Using 3D CNN and Vision Transformer.
    K A; B S
    J Imaging Inform Med; 2024 Feb; 37(1):280-296. PubMed ID: 38343216
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Breast Ultrasound Tumor Classification Using a Hybrid Multitask CNN-Transformer Network.
    Shareef B; Xian M; Vakanski A; Wang H
    Med Image Comput Comput Assist Interv; 2023 Oct; 14223():344-353. PubMed ID: 38601088
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 29.