BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

162 related articles for article (PubMed ID: 35866518)

  • 1. Crucial role of Ca
    Song PP; Wang Y; Hou YP; Mao XW; Liu ZL; Wei M; Yu JP; Wang B; Qian YY; Yan L; Xu S; Jiang YQ; Zhou DQ; Yin M; Dou J
    Pest Manag Sci; 2022 Nov; 78(11):4649-4659. PubMed ID: 35866518
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Crucial Role of the Ca
    Wang Y; Yu Y; Hou YP; Mao XW; Liu ZL; Cui J; Wang B; Xu S; Qian YY; Jiang YQ; Wei M; Song PP
    J Agric Food Chem; 2023 Jun; 71(25):9772-9781. PubMed ID: 37313981
    [No Abstract]   [Full Text] [Related]  

  • 3. Evaluation of antifungal activities and structure-activity relationships of coumarin derivatives.
    Song PP; Zhao J; Liu ZL; Duan YB; Hou YP; Zhao CQ; Wu M; Wei M; Wang NH; Lv Y; Han ZJ
    Pest Manag Sci; 2017 Jan; 73(1):94-101. PubMed ID: 27570117
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Synthesis of osthol-based botanical fungicides and their antifungal application in crop protection.
    Guo Y; Chen J; Ren D; Du B; Wu L; Zhang Y; Wang Z; Qian S
    Bioorg Med Chem; 2021 Jun; 40():116184. PubMed ID: 33971489
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Fungicidal activity of novel quinazolin-6-ylcarboxylates and mode of action on Botrytis cinerea.
    Xu J; Yan D; Chen Y; Cai D; Huang F; Zhu L; Zhang X; Luan S; Xiao C; Huang Q
    Pest Manag Sci; 2023 Sep; 79(9):3022-3032. PubMed ID: 36966485
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The antifungal potential of the chelating agent EDTA against postharvest plant pathogen Botrytis cinerea.
    Yang D; Shi H; Zhang K; Liu X; Ma L
    Int J Food Microbiol; 2023 Mar; 388():110089. PubMed ID: 36682298
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Synergistic effect of the combined bio-fungicides ε-poly-l-lysine and chitooligosaccharide in controlling grey mould (Botrytis cinerea) in tomatoes.
    Sun G; Yang Q; Zhang A; Guo J; Liu X; Wang Y; Ma Q
    Int J Food Microbiol; 2018 Jul; 276():46-53. PubMed ID: 29656220
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Antifungal action of chitosan in combination with fungicides in vitro and chitosan conjugate with gallic acid on tomatoes against Botrytis cinerea.
    Karpova N; Shagdarova B; Lunkov A; Il'ina A; Varlamov V
    Biotechnol Lett; 2021 Aug; 43(8):1565-1574. PubMed ID: 33974182
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Exploring boron applications in modern agriculture: Antifungal activities and mechanisms of phenylboronic acid derivatives.
    Du SS; Luo XF; An JX; Zhang ZJ; Zhang SY; Wang YR; Ding YY; Jiang WQ; Zhang BQ; Ma Y; Zhou Y; Hu YM; Liu YQ
    Pest Manag Sci; 2023 Aug; 79(8):2748-2761. PubMed ID: 36914877
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Dibenzylideneacetone Overcomes
    Niu X; Wang Z; Wang C; Wang H
    J Agric Food Chem; 2023 Dec; 71(49):19422-19433. PubMed ID: 37915214
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Design, Synthesis, and Antifungal Evaluation of Luotonin A Derivatives against Phytopathogenic Fungi.
    Wang RX; Du SS; Wang JR; Chu QR; Tang C; Zhang ZJ; Yang CJ; He YH; Li HX; Wu TL; Liu YQ
    J Agric Food Chem; 2021 Dec; 69(48):14467-14477. PubMed ID: 34843231
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Diterpenoids from Streptomyces sp. SN194 and Their Antifungal Activity against Botrytis cinerea.
    Bi Y; Yu Z
    J Agric Food Chem; 2016 Nov; 64(45):8525-8529. PubMed ID: 27794606
    [TBL] [Abstract][Full Text] [Related]  

  • 13. In vitro and in vivo antimicrobial activity of Xenorhabdus bovienii YL002 against Phytophthora capsici and Botrytis cinerea.
    Fang XL; Li ZZ; Wang YH; Zhang X
    J Appl Microbiol; 2011 Jul; 111(1):145-54. PubMed ID: 21554568
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Perillaldehyde Functions as a Potential Antifungal Agent by Triggering Metacaspase-Independent Apoptosis in Botrytis cinerea.
    Wang G; Wang Y; Wang K; Zhao H; Liu M; Liang W; Li D
    Microbiol Spectr; 2023 Jun; 11(3):e0052623. PubMed ID: 37191530
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of drimenol and synthetic derivatives on growth and germination of Botrytis cinerea: Evaluation of possible mechanism of action.
    Robles-Kelly C; Rubio J; Thomas M; Sedán C; Martinez R; Olea AF; Carrasco H; Taborga L; Silva-Moreno E
    Pestic Biochem Physiol; 2017 Sep; 141():50-56. PubMed ID: 28911740
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Semi-Synthesis of Chloroxaloterpin A and B and Their Antifungal Activity against
    Zhang L; Wang X; Bi Y; Yu Z
    J Agric Food Chem; 2022 Jun; 70(23):7070-7076. PubMed ID: 35652483
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Antifungal activities of fluoroindoles against the postharvest pathogen Botrytis cinerea: In vitro and in silico approaches.
    Raorane CJ; Raj V; Lee JH; Lee J
    Int J Food Microbiol; 2022 Feb; 362():109492. PubMed ID: 34861563
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Antifungal Activity and Putative Mechanism of HWY-289, a Semisynthetic Protoberberine Derivative, against
    An JX; Zhang BQ; Liang HJ; Zhang ZJ; Liu YQ; Zhang SY
    J Agric Food Chem; 2024 Apr; 72(14):7716-7726. PubMed ID: 38536397
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Selection and application of antifungal VOCs-producing yeasts as biocontrol agents of grey mould in fruits.
    Ruiz-Moyano S; Hernández A; Galvan AI; Córdoba MG; Casquete R; Serradilla MJ; Martín A
    Food Microbiol; 2020 Dec; 92():103556. PubMed ID: 32950150
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Design, Synthesis, and Antifungal Evaluation of Neocryptolepine Derivatives against Phytopathogenic Fungi.
    Zhu JK; Gao JM; Yang CJ; Shang XF; Zhao ZM; Lawoe RK; Zhou R; Sun Y; Yin XD; Liu YQ
    J Agric Food Chem; 2020 Feb; 68(8):2306-2315. PubMed ID: 31995378
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.