BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

223 related articles for article (PubMed ID: 35866706)

  • 1. A viral toolbox for conditional and transneuronal gene expression in zebrafish.
    Satou C; Neve RL; Oyibo HK; Zmarz P; Huang KH; Arn Bouldoires E; Mori T; Higashijima SI; Keller GB; Friedrich RW
    Elife; 2022 Jul; 11():. PubMed ID: 35866706
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Viruses in connectomics: Viral transneuronal tracers and genetically modified recombinants as neuroscience research tools.
    Ugolini G
    J Neurosci Methods; 2020 Dec; 346():108917. PubMed ID: 32835704
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Fast gene transfer into the adult zebrafish brain by herpes simplex virus 1 (HSV-1) and electroporation: methods and optogenetic applications.
    Zou M; De Koninck P; Neve RL; Friedrich RW
    Front Neural Circuits; 2014; 8():41. PubMed ID: 24834028
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Advances in viral transneuronal tracing.
    Ugolini G
    J Neurosci Methods; 2010 Dec; 194(1):2-20. PubMed ID: 20004688
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Optogenetic precision toolkit to reveal form, function and connectivity of single neurons.
    Förster D; Kramer A; Baier H; Kubo F
    Methods; 2018 Nov; 150():42-48. PubMed ID: 30194033
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Golgi staining-like retrograde labeling of brain circuits using rabies virus: Focus onto the striatonigral neurons.
    Salin P; Blondel D; Kerkerian-Le Goff L; Coulon P
    J Neurosci Methods; 2020 Oct; 344():108872. PubMed ID: 32693000
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A Single-Component Optogenetic Gal4-UAS System Allows Stringent Control of Gene Expression in Zebrafish and Drosophila.
    Qian Y; Li T; Zhou S; Chen X; Yang Y
    ACS Synth Biol; 2023 Mar; 12(3):664-671. PubMed ID: 36891673
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Application of Recombinant Rabies Virus to Xenopus Tadpole Brain.
    Faulkner RL; Wall NR; Callaway EM; Cline HT
    eNeuro; 2021 Jun; 8(4):. PubMed ID: 34099488
    [TBL] [Abstract][Full Text] [Related]  

  • 9. An optogenetic toolbox for unbiased discovery of functionally connected cells in neural circuits.
    Förster D; Dal Maschio M; Laurell E; Baier H
    Nat Commun; 2017 Jul; 8(1):116. PubMed ID: 28740141
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiplex Neural Circuit Tracing With G-Deleted Rabies Viral Vectors.
    Suzuki T; Morimoto N; Akaike A; Osakada F
    Front Neural Circuits; 2019; 13():77. PubMed ID: 31998081
    [TBL] [Abstract][Full Text] [Related]  

  • 11. G gene-deficient single-round rabies viruses for neuronal circuit analysis.
    Ghanem A; Conzelmann KK
    Virus Res; 2016 May; 216():41-54. PubMed ID: 26065596
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Holographic Optogenetic Activation of Neurons Eliciting Locomotion in Head-Embedded Larval Zebrafish.
    Jia X; Wyart C
    Methods Mol Biol; 2024; 2707():125-140. PubMed ID: 37668909
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tracing of Afferent Connections in the Zebrafish Cerebellum Using Recombinant Rabies Virus.
    Dohaku R; Yamaguchi M; Yamamoto N; Shimizu T; Osakada F; Hibi M
    Front Neural Circuits; 2019; 13():30. PubMed ID: 31068795
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Optogenetics in a transparent animal: circuit function in the larval zebrafish.
    Portugues R; Severi KE; Wyart C; Ahrens MB
    Curr Opin Neurobiol; 2013 Feb; 23(1):119-26. PubMed ID: 23246238
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Optogenetic Dissection of Neuronal Circuits in Zebrafish using Viral Gene Transfer and the Tet System.
    Zhu P; Narita Y; Bundschuh ST; Fajardo O; Schärer YP; Chattopadhyaya B; Bouldoires EA; Stepien AE; Deisseroth K; Arber S; Sprengel R; Rijli FM; Friedrich RW
    Front Neural Circuits; 2009; 3():21. PubMed ID: 20126518
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Caveats in Transneuronal Tracing with Unmodified Rabies Virus: An Evaluation of Aberrant Results Using a Nearly Perfect Tracing Technique.
    Ruigrok TJ; van Touw S; Coulon P
    Front Neural Circuits; 2016; 10():46. PubMed ID: 27462206
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Monosynaptic Tracing in Developing Circuits Using Modified Rabies Virus.
    Cocas L; Fernandez G
    Methods Mol Biol; 2017; 1538():353-366. PubMed ID: 27943201
    [TBL] [Abstract][Full Text] [Related]  

  • 18. New rabies virus variants for monitoring and manipulating activity and gene expression in defined neural circuits.
    Osakada F; Mori T; Cetin AH; Marshel JH; Virgen B; Callaway EM
    Neuron; 2011 Aug; 71(4):617-31. PubMed ID: 21867879
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic and optical targeting of neural circuits and behavior--zebrafish in the spotlight.
    Baier H; Scott EK
    Curr Opin Neurobiol; 2009 Oct; 19(5):553-60. PubMed ID: 19781935
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Establishment of Gal4 transgenic zebrafish lines for analysis of development of cerebellar neural circuitry.
    Takeuchi M; Matsuda K; Yamaguchi S; Asakawa K; Miyasaka N; Lal P; Yoshihara Y; Koga A; Kawakami K; Shimizu T; Hibi M
    Dev Biol; 2015 Jan; 397(1):1-17. PubMed ID: 25300581
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.