BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

131 related articles for article (PubMed ID: 35867089)

  • 1. Commentary: Three-Dimensional Modeling for Augmented and Virtual Reality-Based Posterior Fossa Approach Selection Training: Technical Overview of Novel Open-Source Materials.
    Cote DJ; Ruzevick J; Strickland B; Donoho DA; Zada G
    Oper Neurosurg (Hagerstown); 2022 Jun; 22(6):e261. PubMed ID: 35867089
    [No Abstract]   [Full Text] [Related]  

  • 2. Three-Dimensional Modeling for Augmented and Virtual Reality-Based Posterior Fossa Approach Selection Training: Technical Overview of Novel Open-Source Materials.
    Carlstrom LP; Graffeo CS; Perry A; Nguyen BT; Alexander AE; Holroyd MJ; Peris-Celda M; Driscoll CLW; Link MJ; Morris JM
    Oper Neurosurg (Hagerstown); 2022 Jun; 22(6):409-424. PubMed ID: 35867081
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Advanced Medical Use of Three-Dimensional Imaging in Congenital Heart Disease: Augmented Reality, Mixed Reality, Virtual Reality, and Three-Dimensional Printing.
    Goo HW; Park SJ; Yoo SJ
    Korean J Radiol; 2020 Feb; 21(2):133-145. PubMed ID: 31997589
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Applications of Virtual and Augmented Reality in Biomedical Imaging.
    González Izard S; Juanes Méndez JA; Ruisoto Palomera P; García-Peñalvo FJ
    J Med Syst; 2019 Mar; 43(4):102. PubMed ID: 30874965
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Four-dimensional virtual reality cine cardiac models using free open-source software.
    Priya S; Nagpal P
    Pediatr Radiol; 2020 Oct; 50(11):1617-1623. PubMed ID: 32681236
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of augmented-reality applications in otolaryngology-head and neck surgery.
    Rose AS; Kim H; Fuchs H; Frahm JM
    Laryngoscope; 2019 Oct; 129 Suppl 3():S1-S11. PubMed ID: 31260127
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Virtual and Augmented Reality in Liver Surgery.
    Lang H; Huber T
    Ann Surg; 2020 Jan; 271(1):e8. PubMed ID: 31804399
    [No Abstract]   [Full Text] [Related]  

  • 8. [Liver Surgery 4.0 - Planning, Volumetry, Navigation and Virtual Reality].
    Huber T; Huettl F; Hanke LI; Vradelis L; Heinrich S; Hansen C; Boedecker C; Lang H
    Zentralbl Chir; 2022 Aug; 147(4):361-368. PubMed ID: 35793686
    [TBL] [Abstract][Full Text] [Related]  

  • 9. A standardized set of 3-D objects for virtual reality research and applications.
    Peeters D
    Behav Res Methods; 2018 Jun; 50(3):1047-1054. PubMed ID: 28646401
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Augmented Reality with Virtual Cerebral Aneurysms: A Feasibility Study.
    Karmonik C; Elias SN; Zhang JY; Diaz O; Klucznik RP; Grossman RG; Britz GW
    World Neurosurg; 2018 Nov; 119():e617-e622. PubMed ID: 30077029
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Augmented reality in open surgery.
    Fida B; Cutolo F; di Franco G; Ferrari M; Ferrari V
    Updates Surg; 2018 Sep; 70(3):389-400. PubMed ID: 30006832
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Commentary: Facilitation of Pediatric Posterior Fossa Vascular Malformation Resection Utilizing Virtual Reality Platform: 2-Dimensional Operative Video.
    Pangal DJ; Cote DJ; Bove I; Strickland BA; Ruzevick JJ; Zada G
    Oper Neurosurg (Hagerstown); 2022 Jun; 22(6):e270. PubMed ID: 35867090
    [No Abstract]   [Full Text] [Related]  

  • 13. Anaglyph stereo virtual dissection: a novel inexpensive method for stereoscopic visualisation of intracardiac anatomy on CT angiogram.
    Gupta SK; Gupta P
    Cardiol Young; 2021 Dec; 31(12):1958-1961. PubMed ID: 33851903
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Virtual and augmented reality in anatomy education: Need for comparison with other three-dimensional visualization methods.
    Skandalakis GP; Chytas D; Paraskevas G; Noussios G; Salmas M; Fiska A
    Morphologie; 2022 Jun; 106(353):141-142. PubMed ID: 33762155
    [No Abstract]   [Full Text] [Related]  

  • 15. [IMMERSIVE SURGICAL NAVIGATION USING SPATIAL INTERACTIVE VIRTUAL REALITY AND HOLOGRAPHIC AUGMENTED REALITY].
    Sugimoto M; Shiga Y; Abe M; Kameyama S; Azuma T
    Nihon Geka Gakkai Zasshi; 2016 Sep; 117(5):387-94. PubMed ID: 30169000
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Virtual Reality Environment to Visualize Three-Dimensional Patient-Specific Models by a Mobile Head-Mounted Display.
    Vertemati M; Cassin S; Rizzetto F; Vanzulli A; Elli M; Sampogna G; Gallieni M
    Surg Innov; 2019 Jun; 26(3):359-370. PubMed ID: 30632462
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Robust augmented reality registration method for localization of solid organs' tumors using CT-derived virtual biomechanical model and fluorescent fiducials.
    Kong SH; Haouchine N; Soares R; Klymchenko A; Andreiuk B; Marques B; Shabat G; Piechaud T; Diana M; Cotin S; Marescaux J
    Surg Endosc; 2017 Jul; 31(7):2863-2871. PubMed ID: 27796600
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A concise survey on 3D modeling in the science of anatomy.
    Skrzat J; Zdilla MJ
    Folia Med Cracov; 2019; 59(2):15-22. PubMed ID: 31659345
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Evaluation of voice commands for mode change in virtual reality implant planning procedure.
    Rantamaa HR; Kangas J; Jordan M; Mehtonen H; Mäkelä J; Ronkainen K; Turunen M; Sundqvist O; Syrjä I; Järnstedt J; Raisamo R
    Int J Comput Assist Radiol Surg; 2022 Nov; 17(11):1981-1989. PubMed ID: 35705774
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Application of mixed reality technology in the field of hepatobiliary surgery].
    Hou JC; Zhang YM
    Zhonghua Wai Ke Za Zhi; 2022 Jan; 60(1):17-21. PubMed ID: 34954941
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.