These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

404 related articles for article (PubMed ID: 35867176)

  • 1. Rational coordination regulation in carbon-based single-metal-atom catalysts for electrocatalytic oxygen reduction reaction.
    Cui X; Gao L; Lu CH; Ma R; Yang Y; Lin Z
    Nano Converg; 2022 Jul; 9(1):34. PubMed ID: 35867176
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Intrinsic Electrocatalytic Activity Regulation of M-N-C Single-Atom Catalysts for the Oxygen Reduction Reaction.
    Zhao CX; Li BQ; Liu JN; Zhang Q
    Angew Chem Int Ed Engl; 2021 Feb; 60(9):4448-4463. PubMed ID: 32315106
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Designed Synthesis and Catalytic Mechanisms of Non-Precious Metal Single-Atom Catalysts for Oxygen Reduction Reaction.
    Tong M; Wang L; Fu H
    Small Methods; 2021 Oct; 5(10):e2100865. PubMed ID: 34927931
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Carbon-based single-atom catalysts: impacts of atomic coordination on the oxygen reduction reaction.
    Kang Z; Wang X; Wang D; Bai B; Zhao Y; Xiang X; Zhang B; Shang H
    Nanoscale; 2023 Jun; 15(22):9605-9634. PubMed ID: 37212346
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Recent Advances in Single-Atom Electrocatalysts for Oxygen Reduction Reaction.
    Han J; Bian J; Sun C
    Research (Wash D C); 2020; 2020():9512763. PubMed ID: 32864623
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Advanced Oxygen Electrocatalyst for Air-Breathing Electrode in Zn-Air Batteries.
    Kundu A; Mallick S; Ghora S; Raj CR
    ACS Appl Mater Interfaces; 2021 Sep; 13(34):40172-40199. PubMed ID: 34424683
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Atomic-Level Interface Engineering for Boosting Oxygen Electrocatalysis Performance of Single-Atom Catalysts: From Metal Active Center to the First Coordination Sphere.
    An Q; Bo S; Jiang J; Gong C; Su H; Cheng W; Liu Q
    Adv Sci (Weinh); 2023 Feb; 10(4):e2205031. PubMed ID: 36417569
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Theoretical Insights on ORR Activity of Sn-N-C Single-Atom Catalysts.
    Zhang Y; Li B; Su Y
    Molecules; 2023 Jul; 28(14):. PubMed ID: 37513442
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Carbon-based material-supported single-atom catalysts for energy conversion.
    Zhang H; Liu W; Cao D; Cheng D
    iScience; 2022 Jun; 25(6):104367. PubMed ID: 35620439
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Advances on Axial Coordination Design of Single-Atom Catalysts for Energy Electrocatalysis: A Review.
    Zhang L; Jin N; Yang Y; Miao XY; Wang H; Luo J; Han L
    Nanomicro Lett; 2023 Oct; 15(1):228. PubMed ID: 37831204
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Atomic Modulation and Structure Design of Carbons for Bifunctional Electrocatalysis in Metal-Air Batteries.
    Huang Y; Wang Y; Tang C; Wang J; Zhang Q; Wang Y; Zhang J
    Adv Mater; 2019 Mar; 31(13):e1803800. PubMed ID: 30247779
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Review of Carbon Support Coordination Environments for Single Metal Atom Electrocatalysts (SACS).
    Song W; Xiao C; Ding J; Huang Z; Yang X; Zhang T; Mitlin D; Hu W
    Adv Mater; 2024 Jan; 36(1):e2301477. PubMed ID: 37078970
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electronic Metal-Support Interaction Modulation of Single-Atom Electrocatalysts for Rechargeable Zinc-Air Batteries.
    Wu M; Zhang G; Wang W; Yang H; Rawach D; Chen M; Sun S
    Small Methods; 2022 Mar; 6(3):e2100947. PubMed ID: 35037425
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Design of Local Atomic Environments in Single-Atom Electrocatalysts for Renewable Energy Conversions.
    Sun T; Mitchell S; Li J; Lyu P; Wu X; Pérez-Ramírez J; Lu J
    Adv Mater; 2021 Feb; 33(5):e2003075. PubMed ID: 33283369
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Boron in the Second Coordination Sphere of Fe Single Atom Boosts the Oxygen Reduction Reaction.
    Yang Y; Wang G; Zhang S; Jiao C; Wu X; Pan C; Mao J; Liu Y
    ACS Appl Mater Interfaces; 2024 Apr; 16(13):16224-16231. PubMed ID: 38513153
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sulfur Modified Carbon-Based Single-Atom Catalysts for Electrocatalytic Reactions.
    Li Y; Wei Z; Sun Z; Zhai H; Li S; Chen W
    Small; 2024 May; ():e2401900. PubMed ID: 38798155
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A novel tetragonal T-C
    Xue Z; Tan R; Wang H; Tian J; Wei X; Hou H; Zhao Y
    J Colloid Interface Sci; 2023 Dec; 651():149-158. PubMed ID: 37542890
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Atomically Dispersed Selenium Sites on Nitrogen-Doped Carbon for Efficient Electrocatalytic Oxygen Reduction.
    Hu H; Wang J; Cui B; Zheng X; Lin J; Deng Y; Han X
    Angew Chem Int Ed Engl; 2022 Jan; 61(3):e202114441. PubMed ID: 34806271
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Engineering organic polymers as emerging sustainable materials for powerful electrocatalysts.
    Cui X; Wu M; Liu X; He B; Zhu Y; Jiang Y; Yang Y
    Chem Soc Rev; 2024 Feb; 53(3):1447-1494. PubMed ID: 38164808
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Active site engineering of single-atom carbonaceous electrocatalysts for the oxygen reduction reaction.
    Chen G; Zhong H; Feng X
    Chem Sci; 2021 Dec; 12(48):15802-15820. PubMed ID: 35024105
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 21.