These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

240 related articles for article (PubMed ID: 35867366)

  • 1. Dual-Branch Interactive Networks on Multichannel Time Series for Human Activity Recognition.
    Tang Y; Zhang L; Wu H; He J; Song A
    IEEE J Biomed Health Inform; 2022 Oct; 26(10):5223-5234. PubMed ID: 35867366
    [TBL] [Abstract][Full Text] [Related]  

  • 2. The Convolutional Neural Networks Training With Channel-Selectivity for Human Activity Recognition Based on Sensors.
    Huang W; Zhang L; Teng Q; Song C; He J
    IEEE J Biomed Health Inform; 2021 Oct; 25(10):3834-3843. PubMed ID: 34170835
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Deep Wavelet Convolutional Neural Networks for Multimodal Human Activity Recognition Using Wearable Inertial Sensors.
    Vuong TH; Doan T; Takasu A
    Sensors (Basel); 2023 Dec; 23(24):. PubMed ID: 38139567
    [TBL] [Abstract][Full Text] [Related]  

  • 4. An improved human activity recognition technique based on convolutional neural network.
    Raj R; Kos A
    Sci Rep; 2023 Dec; 13(1):22581. PubMed ID: 38114574
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Inertial-Measurement-Unit-Based Novel Human Activity Recognition Algorithm Using Conformer.
    Kim YW; Cho WH; Kim KS; Lee S
    Sensors (Basel); 2022 May; 22(10):. PubMed ID: 35632341
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Wearable Sensor-Based Residual Multifeature Fusion Shrinkage Networks for Human Activity Recognition.
    Zeng F; Guo M; Tan L; Guo F; Liu X
    Sensors (Basel); 2024 Jan; 24(3):. PubMed ID: 38339474
    [TBL] [Abstract][Full Text] [Related]  

  • 7. MaskCAE: Masked Convolutional AutoEncoder via Sensor Data Reconstruction for Self-Supervised Human Activity Recognition.
    Cheng D; Zhang L; Qin L; Wang S; Wu H; Song A
    IEEE J Biomed Health Inform; 2024 May; 28(5):2687-2698. PubMed ID: 38442051
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Deep SE-BiLSTM with IFPOA Fine-Tuning for Human Activity Recognition Using Mobile and Wearable Sensors.
    Jameer S; Syed H
    Sensors (Basel); 2023 Apr; 23(9):. PubMed ID: 37177523
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ensem-HAR: An Ensemble Deep Learning Model for Smartphone Sensor-Based Human Activity Recognition for Measurement of Elderly Health Monitoring.
    Bhattacharya D; Sharma D; Kim W; Ijaz MF; Singh PK
    Biosensors (Basel); 2022 Jun; 12(6):. PubMed ID: 35735541
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Wrapper-based deep feature optimization for activity recognition in the wearable sensor networks of healthcare systems.
    Sahoo KK; Ghosh R; Mallik S; Roy A; Singh PK; Zhao Z
    Sci Rep; 2023 Jan; 13(1):965. PubMed ID: 36653370
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Human activity recognition from sensor data using spatial attention-aided CNN with genetic algorithm.
    Sarkar A; Hossain SKS; Sarkar R
    Neural Comput Appl; 2023; 35(7):5165-5191. PubMed ID: 36311167
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Revolutionizing health monitoring: Integrating transformer models with multi-head attention for precise human activity recognition using wearable devices.
    Muniasamy A
    Technol Health Care; 2024 Aug; ():. PubMed ID: 39269866
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Data Valuation Algorithm for Inertial Measurement Unit-Based Human Activity Recognition.
    Kim YW; Lee S
    Sensors (Basel); 2022 Dec; 23(1):. PubMed ID: 36616781
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A multi-scale feature extraction fusion model for human activity recognition.
    Zhang C; Cao K; Lu L; Deng T
    Sci Rep; 2022 Nov; 12(1):20620. PubMed ID: 36450822
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Matched Filter Interpretation of CNN Classifiers with Application to HAR.
    Farag MM
    Sensors (Basel); 2022 Oct; 22(20):. PubMed ID: 36298408
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Achieving More with Less: A Lightweight Deep Learning Solution for Advanced Human Activity Recognition (HAR).
    AlMuhaideb S; AlAbdulkarim L; AlShahrani DM; AlDhubaib H; AlSadoun DE
    Sensors (Basel); 2024 Aug; 24(16):. PubMed ID: 39205129
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Human Activity Recognition Using Attention-Mechanism-Based Deep Learning Feature Combination.
    Akter M; Ansary S; Khan MA; Kim D
    Sensors (Basel); 2023 Jun; 23(12):. PubMed ID: 37420881
    [TBL] [Abstract][Full Text] [Related]  

  • 18. CVTrack: Combined Convolutional Neural Network and Vision Transformer Fusion Model for Visual Tracking.
    Wang J; Song Y; Song C; Tian H; Zhang S; Sun J
    Sensors (Basel); 2024 Jan; 24(1):. PubMed ID: 38203136
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Wearable Sensor-Based Human Activity Recognition with Transformer Model.
    Dirgová Luptáková I; Kubovčík M; Pospíchal J
    Sensors (Basel); 2022 Mar; 22(5):. PubMed ID: 35271058
    [TBL] [Abstract][Full Text] [Related]  

  • 20. w-HAR: An Activity Recognition Dataset and Framework Using Low-Power Wearable Devices.
    Bhat G; Tran N; Shill H; Ogras UY
    Sensors (Basel); 2020 Sep; 20(18):. PubMed ID: 32962046
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.