These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
313 related articles for article (PubMed ID: 35867397)
1. Machine Learning-Enabled Multimodal Fusion of Intra-Atrial and Body Surface Signals in Prediction of Atrial Fibrillation Ablation Outcomes. Tang S; Razeghi O; Kapoor R; Alhusseini MI; Fazal M; Rogers AJ; Rodrigo Bort M; Clopton P; Wang PJ; Rubin DL; Narayan SM; Baykaner T Circ Arrhythm Electrophysiol; 2022 Aug; 15(8):e010850. PubMed ID: 35867397 [TBL] [Abstract][Full Text] [Related]
2. Atrial fibrillation ablation outcome prediction with a machine learning fusion framework incorporating cardiac computed tomography. Razeghi O; Kapoor R; Alhusseini MI; Fazal M; Tang S; Roney CH; Rogers AJ; Lee A; Wang PJ; Clopton P; Rubin DL; Narayan SM; Niederer S; Baykaner T J Cardiovasc Electrophysiol; 2023 May; 34(5):1164-1174. PubMed ID: 36934383 [TBL] [Abstract][Full Text] [Related]
3. Deep learning-based multimodal fusion of the surface ECG and clinical features in prediction of atrial fibrillation recurrence following catheter ablation. Qiu Y; Guo H; Wang S; Yang S; Peng X; Xiayao D; Chen R; Yang J; Liu J; Li M; Li Z; Chen H; Chen M BMC Med Inform Decis Mak; 2024 Aug; 24(1):225. PubMed ID: 39118118 [TBL] [Abstract][Full Text] [Related]
4. Predicting Atrial Fibrillation Recurrence by Combining Population Data and Virtual Cohorts of Patient-Specific Left Atrial Models. Roney CH; Sim I; Yu J; Beach M; Mehta A; Alonso Solis-Lemus J; Kotadia I; Whitaker J; Corrado C; Razeghi O; Vigmond E; Narayan SM; O'Neill M; Williams SE; Niederer SA Circ Arrhythm Electrophysiol; 2022 Feb; 15(2):e010253. PubMed ID: 35089057 [TBL] [Abstract][Full Text] [Related]
5. CHADS2 and CHA2DS2-VASc scores as predictors of left atrial ablation outcomes for paroxysmal atrial fibrillation. Letsas KP; Efremidis M; Giannopoulos G; Deftereos S; Lioni L; Korantzopoulos P; Vlachos K; Xydonas S; Kossyvakis C; Sideris A Europace; 2014 Feb; 16(2):202-7. PubMed ID: 23813452 [TBL] [Abstract][Full Text] [Related]
6. Atrial Fibrillation Complexity Parameters Derived From Surface ECGs Predict Procedural Outcome and Long-Term Follow-Up of Stepwise Catheter Ablation for Atrial Fibrillation. Lankveld T; Zeemering S; Scherr D; Kuklik P; Hoffmann BA; Willems S; Pieske B; Haïssaguerre M; Jaïs P; Crijns HJ; Schotten U Circ Arrhythm Electrophysiol; 2016 Feb; 9(2):e003354. PubMed ID: 26823480 [TBL] [Abstract][Full Text] [Related]
7. AFA-Recur: an ESC EORP AFA-LT registry machine-learning web calculator predicting atrial fibrillation recurrence after ablation. Saglietto A; Gaita F; Blomstrom-Lundqvist C; Arbelo E; Dagres N; Brugada J; Maggioni AP; Tavazzi L; Kautzner J; De Ferrari GM; Anselmino M Europace; 2023 Feb; 25(1):92-100. PubMed ID: 36006664 [TBL] [Abstract][Full Text] [Related]
8. The Clinical Application of the Deep Learning Technique for Predicting Trigger Origins in Patients With Paroxysmal Atrial Fibrillation With Catheter Ablation. Liu CM; Chang SL; Chen HH; Chen WS; Lin YJ; Lo LW; Hu YF; Chung FP; Chao TF; Tuan TC; Liao JN; Lin CY; Chang TY; Wu CI; Kuo L; Wu MH; Chen CK; Chang YY; Shiu YC; Lu HH; Chen SA Circ Arrhythm Electrophysiol; 2020 Nov; 13(11):e008518. PubMed ID: 33021404 [TBL] [Abstract][Full Text] [Related]
9. Comparison of CHADS2, R2CHADS2, and CHA2DS2-VASc scores for the prediction of rhythm outcomes after catheter ablation of atrial fibrillation: the Leipzig Heart Center AF Ablation Registry. Kornej J; Hindricks G; Kosiuk J; Arya A; Sommer P; Husser D; Rolf S; Richter S; Huo Y; Piorkowski C; Bollmann A Circ Arrhythm Electrophysiol; 2014 Apr; 7(2):281-7. PubMed ID: 24610790 [TBL] [Abstract][Full Text] [Related]
10. Explainable machine learning model reveals its decision-making process in identifying patients with paroxysmal atrial fibrillation at high risk for recurrence after catheter ablation. Ma Y; Zhang D; Xu J; Pang H; Hu M; Li J; Zhou S; Guo L; Yi F BMC Cardiovasc Disord; 2023 Feb; 23(1):91. PubMed ID: 36803424 [TBL] [Abstract][Full Text] [Related]
11. A new machine learning approach for predicting likelihood of recurrence following ablation for atrial fibrillation from CT. Atta-Fosu T; LaBarbera M; Ghose S; Schoenhagen P; Saliba W; Tchou PJ; Lindsay BD; Desai MY; Kwon D; Chung MK; Madabhushi A BMC Med Imaging; 2021 Mar; 21(1):45. PubMed ID: 33750343 [TBL] [Abstract][Full Text] [Related]
12. Effect of substrate modification in catheter ablation of paroxysmal atrial fibrillation: pulmonary vein isolation alone or with complex fractionated electrogram ablation. Nam GB; Jin ES; Choi H; Song HG; Kim SH; Kim KH; Hwang ES; Park KM; Kim J; Rhee KS; Choi KJ; Kim YH Tex Heart Inst J; 2012; 39(3):372-9. PubMed ID: 22719147 [TBL] [Abstract][Full Text] [Related]
13. Deep Learning Model for Predicting Rhythm Outcomes after Radiofrequency Catheter Ablation in Patients with Atrial Fibrillation. Lee DI; Park MJ; Choi JW; Park S J Healthc Eng; 2022; 2022():2863495. PubMed ID: 36124238 [TBL] [Abstract][Full Text] [Related]
14. Surface ECG and intracardiac spectral measures predict atrial fibrillation recurrence after catheter ablation. Szilágyi J; Walters TE; Marcus GM; Vedantham V; Moss JD; Badhwar N; Lee B; Lee R; Tseng ZH; Gerstenfeld EP J Cardiovasc Electrophysiol; 2018 Oct; 29(10):1371-1378. PubMed ID: 30016007 [TBL] [Abstract][Full Text] [Related]
15. An artificial intelligence-enabled electrocardiogram algorithm for the prediction of left atrial low-voltage areas in persistent atrial fibrillation. Tao Y; Zhang D; Tan C; Wang Y; Shi L; Chi H; Geng S; Ma Z; Hong S; Liu XP J Cardiovasc Electrophysiol; 2024 Sep; 35(9):1849-1858. PubMed ID: 39054663 [TBL] [Abstract][Full Text] [Related]
16. The APPLE score: a novel and simple score for the prediction of rhythm outcomes after catheter ablation of atrial fibrillation. Kornej J; Hindricks G; Shoemaker MB; Husser D; Arya A; Sommer P; Rolf S; Saavedra P; Kanagasundram A; Patrick Whalen S; Montgomery J; Ellis CR; Darbar D; Bollmann A Clin Res Cardiol; 2015 Oct; 104(10):871-6. PubMed ID: 25876528 [TBL] [Abstract][Full Text] [Related]
17. CHA2DS2-VASc and SAMe-TT2R2 scores as predictors of recurrence for nonvalvular atrial fibrillation patients on vitamin K antagonists after radiofrequency catheter ablation. Zhao J; Zhou D; Chen M; Zhuo C; Lin Z; Zheng L; Wang Q J Cardiovasc Med (Hagerstown); 2020 Mar; 21(3):200-208. PubMed ID: 31977539 [TBL] [Abstract][Full Text] [Related]
18. Use of artificial intelligence and I-Score for prediction of recurrence before catheter ablation of atrial fibrillation. Liu CM; Chen WS; Chang SL; Hsieh YC; Hsu YH; Chang HX; Lin YJ; Lo LW; Hu YF; Chung FP; Chao TF; Tuan TC; Liao JN; Lin CY; Chang TY; Kuo L; Wu CI; Wu MH; Chen CK; Chang YY; Shiu YC; Lu HH; Chen SA Int J Cardiol; 2024 May; 402():131851. PubMed ID: 38360099 [TBL] [Abstract][Full Text] [Related]
19. Effectiveness of P-wave ECG index and left atrial appendage volume in predicting atrial fibrillation recurrence after first radiofrequency catheter ablation. Li R; Yang X; Jia M; Wang D; Cui X; Bai L; Zhao L; Zhang J BMC Cardiovasc Disord; 2021 Apr; 21(1):164. PubMed ID: 33823799 [TBL] [Abstract][Full Text] [Related]
20. The impact of risk score (CHADS2 versus CHA2DS2-VASc) on long-term outcomes after atrial fibrillation ablation. Jacobs V; May HT; Bair TL; Crandall BG; Cutler M; Day JD; Weiss JP; Osborn JS; Muhlestein JB; Anderson JL; Mallender C; Bunch TJ Heart Rhythm; 2015 Apr; 12(4):681-6. PubMed ID: 25546809 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]