These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
408 related articles for article (PubMed ID: 35867567)
41. Evaluation of strategies for the assembly of diverse bacterial genomes using MinION long-read sequencing. Goldstein S; Beka L; Graf J; Klassen JL BMC Genomics; 2019 Jan; 20(1):23. PubMed ID: 30626323 [TBL] [Abstract][Full Text] [Related]
42. A Comparison of Structural Variant Calling from Short-Read and Nanopore-Based Whole-Genome Sequencing Using Optical Genome Mapping as a Benchmark. Pei Y; Tanguy M; Giess A; Dixit A; Wilson LC; Gibbons RJ; Twigg SRF; Elgar G; Wilkie AOM Genes (Basel); 2024 Jul; 15(7):. PubMed ID: 39062704 [TBL] [Abstract][Full Text] [Related]
43. Evaluation of whole-genome sequencing for outbreak detection of Verotoxigenic Escherichia coli O157:H7 from the Canadian perspective. Rumore J; Tschetter L; Kearney A; Kandar R; McCormick R; Walker M; Peterson CL; Reimer A; Nadon C BMC Genomics; 2018 Dec; 19(1):870. PubMed ID: 30514209 [TBL] [Abstract][Full Text] [Related]
44. Advancing metagenome-assembled genome-based pathogen identification: unraveling the power of long-read assembly algorithms in Oxford Nanopore sequencing. Chen Z; Grim CJ; Ramachandran P; Meng J Microbiol Spectr; 2024 Jun; 12(6):e0011724. PubMed ID: 38687063 [TBL] [Abstract][Full Text] [Related]
45. Whole-Genome Sequencing of Recent Listeria monocytogenes Isolates from Germany Reveals Population Structure and Disease Clusters. Halbedel S; Prager R; Fuchs S; Trost E; Werner G; Flieger A J Clin Microbiol; 2018 Jun; 56(6):. PubMed ID: 29643197 [No Abstract] [Full Text] [Related]
46. Primed and ready: nanopore metabarcoding can now recover highly accurate consensus barcodes that are generally indel-free. Chang JJM; Ip YCA; Neo WL; Mowe MAD; Jaafar Z; Huang D BMC Genomics; 2024 Sep; 25(1):842. PubMed ID: 39251911 [TBL] [Abstract][Full Text] [Related]
47. Comprehensive Assessment of Subtyping Methods for Improved Surveillance of Foodborne Salmonella. Pan H; Jia C; Paudyal N; Li F; Mao J; Liu X; Dong C; Zhou K; Liao X; Gong J; Fang W; Li X; Kehrenberg C; Yue M Microbiol Spectr; 2022 Oct; 10(5):e0247922. PubMed ID: 36194132 [TBL] [Abstract][Full Text] [Related]
48. SeqSero2: Rapid and Improved Zhang S; den Bakker HC; Li S; Chen J; Dinsmore BA; Lane C; Lauer AC; Fields PI; Deng X Appl Environ Microbiol; 2019 Dec; 85(23):. PubMed ID: 31540993 [TBL] [Abstract][Full Text] [Related]
49. Exploring the potential of Oxford Nanopore Technologies sequencing for Mycobacterium tuberculosis sequencing: An assessment of R10 flowcells and V14 chemistry. Dippenaar A; Costa Conceição E; Wells F; Loubser J; Mann B; De Diego Fuertes M; Rennie V; Warren RM; Van Rie A PLoS One; 2024; 19(6):e0303938. PubMed ID: 38843147 [TBL] [Abstract][Full Text] [Related]
50. A Whole-Genome-Based Gene-by-Gene Typing System for Standardized High-Resolution Strain Typing of Bacillus anthracis. Abdel-Glil MY; Chiaverini A; Garofolo G; Fasanella A; Parisi A; Harmsen D; Jolley KA; Elschner MC; Tomaso H; Linde J; Galante D J Clin Microbiol; 2021 Jun; 59(7):e0288920. PubMed ID: 33827898 [TBL] [Abstract][Full Text] [Related]
51. Comparison of the two up-to-date sequencing technologies for genome assembly: HiFi reads of Pacific Biosciences Sequel II system and ultralong reads of Oxford Nanopore. Lang D; Zhang S; Ren P; Liang F; Sun Z; Meng G; Tan Y; Li X; Lai Q; Han L; Wang D; Hu F; Wang W; Liu S Gigascience; 2020 Dec; 9(12):. PubMed ID: 33319909 [TBL] [Abstract][Full Text] [Related]
52. Accurate profiling of forensic autosomal STRs using the Oxford Nanopore Technologies MinION device. Hall CL; Kesharwani RK; Phillips NR; Planz JV; Sedlazeck FJ; Zascavage RR Forensic Sci Int Genet; 2022 Jan; 56():102629. PubMed ID: 34837788 [TBL] [Abstract][Full Text] [Related]
53. ECNano: A cost-effective workflow for target enrichment sequencing and accurate variant calling on 4800 clinically significant genes using a single MinION flowcell. Leung AW; Leung HC; Wong CL; Zheng ZX; Lui WW; Luk HM; Lo IF; Luo R; Lam TW BMC Med Genomics; 2022 Mar; 15(1):43. PubMed ID: 35246132 [TBL] [Abstract][Full Text] [Related]
54. An evolution of Nanopore next-generation sequencing technology: implications for medical microbiology and public health. Mostafa HH J Clin Microbiol; 2024 May; 62(5):e0024624. PubMed ID: 38563782 [TBL] [Abstract][Full Text] [Related]
55. Can we use it? On the utility of de novo and reference-based assembly of Nanopore data for plant plastome sequencing. Scheunert A; Dorfner M; Lingl T; Oberprieler C PLoS One; 2020; 15(3):e0226234. PubMed ID: 32208422 [TBL] [Abstract][Full Text] [Related]
57. Performance and Accuracy of Four Open-Source Tools for Uelze L; Borowiak M; Deneke C; Szabó I; Fischer J; Tausch SH; Malorny B Appl Environ Microbiol; 2020 Feb; 86(5):. PubMed ID: 31862714 [TBL] [Abstract][Full Text] [Related]
58. Phylogenetic Analysis of Mycobacterium tuberculosis Strains in Wales by Use of Core Genome Multilocus Sequence Typing To Analyze Whole-Genome Sequencing Data. Jones RC; Harris LG; Morgan S; Ruddy MC; Perry M; Williams R; Humphrey T; Temple M; Davies AP J Clin Microbiol; 2019 Jun; 57(6):. PubMed ID: 30944195 [TBL] [Abstract][Full Text] [Related]
59. Evaluation of WGS based approaches for investigating a food-borne outbreak caused by Salmonella enterica serovar Derby in Germany. Simon S; Trost E; Bender J; Fuchs S; Malorny B; Rabsch W; Prager R; Tietze E; Flieger A Food Microbiol; 2018 May; 71():46-54. PubMed ID: 29366468 [TBL] [Abstract][Full Text] [Related]
60. Evaluation of whole and core genome multilocus sequence typing allele schemes for Leeper MM; Tolar BM; Griswold T; Vidyaprakash E; Hise KB; Williams GM; Im SB; Chen JC; Pouseele H; Carleton HA Front Microbiol; 2023; 14():1254777. PubMed ID: 37808298 [No Abstract] [Full Text] [Related] [Previous] [Next] [New Search]