BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

210 related articles for article (PubMed ID: 35867836)

  • 21. WNK1 and OSR1 regulate the Na+, K+, 2Cl- cotransporter in HeLa cells.
    Anselmo AN; Earnest S; Chen W; Juang YC; Kim SC; Zhao Y; Cobb MH
    Proc Natl Acad Sci U S A; 2006 Jul; 103(29):10883-8. PubMed ID: 16832045
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Activin receptor-like kinase 1 modulates transforming growth factor-beta 1 signaling in the regulation of angiogenesis.
    Oh SP; Seki T; Goss KA; Imamura T; Yi Y; Donahoe PK; Li L; Miyazono K; ten Dijke P; Kim S; Li E
    Proc Natl Acad Sci U S A; 2000 Mar; 97(6):2626-31. PubMed ID: 10716993
    [TBL] [Abstract][Full Text] [Related]  

  • 23. WNK1 regulates skeletal muscle cell hypertrophy by modulating the nuclear localization and transcriptional activity of FOXO4.
    Mandai S; Mori T; Nomura N; Furusho T; Arai Y; Kikuchi H; Sasaki E; Sohara E; Rai T; Uchida S
    Sci Rep; 2018 Jun; 8(1):9101. PubMed ID: 29904119
    [TBL] [Abstract][Full Text] [Related]  

  • 24. miR-524-5p inhibits angiogenesis through targeting WNK1 in colon cancer cells.
    Li X; Li Z; Zhu Y; Li Z; Yao L; Zhang L; Yuan L; Shang Y; Liu J; Li C
    Am J Physiol Gastrointest Liver Physiol; 2020 Apr; 318(4):G827-G839. PubMed ID: 32174132
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Role of secreted modular calcium-binding protein 1 (SMOC1) in transforming growth factor β signalling and angiogenesis.
    Awwad K; Hu J; Shi L; Mangels N; Abdel Malik R; Zippel N; Fisslthaler B; Eble JA; Pfeilschifter J; Popp R; Fleming I
    Cardiovasc Res; 2015 May; 106(2):284-94. PubMed ID: 25750188
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Biological cross-talk between WNK1 and the transforming growth factor beta-Smad signaling pathway.
    Lee BH; Chen W; Stippec S; Cobb MH
    J Biol Chem; 2007 Jun; 282(25):17985-17996. PubMed ID: 17392271
    [TBL] [Abstract][Full Text] [Related]  

  • 27. WNK1 regulates phosphorylation of cation-chloride-coupled cotransporters via the STE20-related kinases, SPAK and OSR1.
    Moriguchi T; Urushiyama S; Hisamoto N; Iemura S; Uchida S; Natsume T; Matsumoto K; Shibuya H
    J Biol Chem; 2005 Dec; 280(52):42685-93. PubMed ID: 16263722
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Functional interactions of the SPAK/OSR1 kinases with their upstream activator WNK1 and downstream substrate NKCC1.
    Vitari AC; Thastrup J; Rafiqi FH; Deak M; Morrice NA; Karlsson HK; Alessi DR
    Biochem J; 2006 Jul; 397(1):223-31. PubMed ID: 16669787
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Activation of the thiazide-sensitive Na+-Cl- cotransporter by the WNK-regulated kinases SPAK and OSR1.
    Richardson C; Rafiqi FH; Karlsson HK; Moleleki N; Vandewalle A; Campbell DG; Morrice NA; Alessi DR
    J Cell Sci; 2008 Mar; 121(Pt 5):675-84. PubMed ID: 18270262
    [TBL] [Abstract][Full Text] [Related]  

  • 30. The vitamin K-dependent anticoagulant factor, protein S, inhibits multiple VEGF-A-induced angiogenesis events in a Mer- and SHP2-dependent manner.
    Fraineau S; Monvoisin A; Clarhaut J; Talbot J; Simonneau C; Kanthou C; Kanse SM; Philippe M; Benzakour O
    Blood; 2012 Dec; 120(25):5073-83. PubMed ID: 23065156
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Generation of WNK1 knockout cell lines by CRISPR/Cas-mediated genome editing.
    Roy A; Goodman JH; Begum G; Donnelly BF; Pittman G; Weinman EJ; Sun D; Subramanya AR
    Am J Physiol Renal Physiol; 2015 Feb; 308(4):F366-76. PubMed ID: 25477473
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Silencing of long noncoding RNA LEF1-AS1 prevents the progression of hepatocellular carcinoma via the crosstalk with microRNA-136-5p/WNK1.
    Dong H; Jian P; Yu M; Wang L
    J Cell Physiol; 2020 Oct; 235(10):6548-6562. PubMed ID: 32068261
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Regulation of CFTR Bicarbonate Channel Activity by WNK1: Implications for Pancreatitis and CFTR-Related Disorders.
    Kim Y; Jun I; Shin DH; Yoon JG; Piao H; Jung J; Park HW; Cheng MH; Bahar I; Whitcomb DC; Lee MG
    Cell Mol Gastroenterol Hepatol; 2020; 9(1):79-103. PubMed ID: 31561038
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Control of Podocyte and Glomerular Capillary Wall Structure and Elasticity by WNK1 Kinase.
    Liu Z; Yoon J; Wichaidit C; Jaykumar AB; Dbouk HA; Embry AE; Liu L; Henderson JM; Chang AN; Cobb MH; Miller RT
    Front Cell Dev Biol; 2020; 8():618898. PubMed ID: 33604334
    [TBL] [Abstract][Full Text] [Related]  

  • 35. WNK1 is an unexpected autophagy inhibitor.
    Gallolu Kankanamalage S; Lee AY; Wichaidit C; Lorente-Rodriguez A; Shah AM; Stippec S; Whitehurst AW; Cobb MH
    Autophagy; 2017 May; 13(5):969-970. PubMed ID: 28282258
    [TBL] [Abstract][Full Text] [Related]  

  • 36. WNK1-TAK1 signaling suppresses lipopolysaccharide-induced cytokine production and classical activation in macrophages.
    Arai Y; Asano K; Mandai S; Ando F; Susa K; Mori T; Nomura N; Rai T; Tanaka M; Uchida S; Sohara E
    Biochem Biophys Res Commun; 2020 Dec; 533(4):1290-1297. PubMed ID: 33046244
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Controlling angiogenesis by two unique TGF-β type I receptor signaling pathways.
    Orlova VV; Liu Z; Goumans MJ; ten Dijke P
    Histol Histopathol; 2011 Sep; 26(9):1219-30. PubMed ID: 21751154
    [TBL] [Abstract][Full Text] [Related]  

  • 38. TAK1 kinase signaling regulates embryonic angiogenesis by modulating endothelial cell survival and migration.
    Morioka S; Inagaki M; Komatsu Y; Mishina Y; Matsumoto K; Ninomiya-Tsuji J
    Blood; 2012 Nov; 120(18):3846-57. PubMed ID: 22972987
    [TBL] [Abstract][Full Text] [Related]  

  • 39. WNK1 Enhances Migration and Invasion in Breast Cancer Models.
    Jaykumar AB; Jung JU; Parida PK; Dang TT; Wichaidit C; Kannangara AR; Earnest S; Goldsmith EJ; Pearson GW; Malladi S; Cobb MH
    Mol Cancer Ther; 2021 Oct; 20(10):1800-1808. PubMed ID: 34253593
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Contribution of the WNK1 kinase to corneal wound healing using the tissue-engineered human cornea as an in vitro model.
    Desjardins P; Couture C; Germain L; Guérin SL
    J Tissue Eng Regen Med; 2019 Sep; 13(9):1595-1608. PubMed ID: 31207112
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.