These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

226 related articles for article (PubMed ID: 35867841)

  • 1. Current status and future developments in predicting outcomes in radiation oncology.
    Niraula D; Cui S; Pakela J; Wei L; Luo Y; Ten Haken RK; El Naqa I
    Br J Radiol; 2022 Oct; 95(1139):20220239. PubMed ID: 35867841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Towards a safe and efficient clinical implementation of machine learning in radiation oncology by exploring model interpretability, explainability and data-model dependency.
    Barragán-Montero A; Bibal A; Dastarac MH; Draguet C; Valdés G; Nguyen D; Willems S; Vandewinckele L; Holmström M; Löfman F; Souris K; Sterpin E; Lee JA
    Phys Med Biol; 2022 May; 67(11):. PubMed ID: 35421855
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Quantum deep reinforcement learning for clinical decision support in oncology: application to adaptive radiotherapy.
    Niraula D; Jamaluddin J; Matuszak MM; Haken RKT; Naqa IE
    Sci Rep; 2021 Dec; 11(1):23545. PubMed ID: 34876609
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using Big Data Analytics to Advance Precision Radiation Oncology.
    McNutt TR; Benedict SH; Low DA; Moore K; Shpitser I; Jiang W; Lakshminarayanan P; Cheng Z; Han P; Hui X; Nakatsugawa M; Lee J; Moore JA; Robertson SP; Shah V; Taylor R; Quon H; Wong J; DeWeese T
    Int J Radiat Oncol Biol Phys; 2018 Jun; 101(2):285-291. PubMed ID: 29726357
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Data-driven modeling and prediction of blood glucose dynamics: Machine learning applications in type 1 diabetes.
    Woldaregay AZ; Årsand E; Walderhaug S; Albers D; Mamykina L; Botsis T; Hartvigsen G
    Artif Intell Med; 2019 Jul; 98():109-134. PubMed ID: 31383477
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Big Data and machine learning in radiation oncology: State of the art and future prospects.
    Bibault JE; Giraud P; Burgun A
    Cancer Lett; 2016 Nov; 382(1):110-117. PubMed ID: 27241666
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Machine learning for radiation outcome modeling and prediction.
    Luo Y; Chen S; Valdes G
    Med Phys; 2020 Jun; 47(5):e178-e184. PubMed ID: 32418338
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Feature Engineering for Interpretable Machine Learning for Quality Assurance in Radiation Oncology.
    Pillai M; Adapa K; Shumway JW; Dooley J; Das SK; Chera BS; Mazur L
    Stud Health Technol Inform; 2022 Jun; 290():460-464. PubMed ID: 35673057
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Combining handcrafted features with latent variables in machine learning for prediction of radiation-induced lung damage.
    Cui S; Luo Y; Tseng HH; Ten Haken RK; El Naqa I
    Med Phys; 2019 May; 46(5):2497-2511. PubMed ID: 30891794
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Reinventing radiation therapy with machine learning and imaging bio-markers (radiomics): State-of-the-art, challenges and perspectives.
    Dercle L; Henry T; Carré A; Paragios N; Deutsch E; Robert C
    Methods; 2021 Apr; 188():44-60. PubMed ID: 32697964
    [TBL] [Abstract][Full Text] [Related]  

  • 11. How Advances in Imaging Will Affect Precision Radiation Oncology.
    Jaffray DA; Das S; Jacobs PM; Jeraj R; Lambin P
    Int J Radiat Oncol Biol Phys; 2018 Jun; 101(2):292-298. PubMed ID: 29726358
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Using Artificial Intelligence to Improve the Quality and Safety of Radiation Therapy.
    Pillai M; Adapa K; Das SK; Mazur L; Dooley J; Marks LB; Thompson RF; Chera BS
    J Am Coll Radiol; 2019 Sep; 16(9 Pt B):1267-1272. PubMed ID: 31492404
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Applications and limitations of machine learning in radiation oncology.
    Jarrett D; Stride E; Vallis K; Gooding MJ
    Br J Radiol; 2019 Aug; 92(1100):20190001. PubMed ID: 31112393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Artificial Intelligence for Outcome Modeling in Radiotherapy.
    Cui S; Hope A; Dilling TJ; Dawson LA; Ten Haken R; El Naqa I
    Semin Radiat Oncol; 2022 Oct; 32(4):351-364. PubMed ID: 36202438
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Vision 20/20: Automation and advanced computing in clinical radiation oncology.
    Moore KL; Kagadis GC; McNutt TR; Moiseenko V; Mutic S
    Med Phys; 2014 Jan; 41(1):010901. PubMed ID: 24387492
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Patient-reported outcomes and survivorship in radiation oncology: overcoming the cons.
    Siddiqui F; Liu AK; Watkins-Bruner D; Movsas B
    J Clin Oncol; 2014 Sep; 32(26):2920-7. PubMed ID: 25113760
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Molecular Biology in Treatment Decision Processes-Neuro-Oncology Edition.
    Krauze AV; Camphausen K
    Int J Mol Sci; 2021 Dec; 22(24):. PubMed ID: 34948075
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Review of some existing QML frameworks and novel hybrid classical-quantum neural networks realising binary classification for the noisy datasets.
    Schetakis N; Aghamalyan D; Griffin P; Boguslavsky M
    Sci Rep; 2022 Jul; 12(1):11927. PubMed ID: 35831369
    [TBL] [Abstract][Full Text] [Related]  

  • 19. The role of artificial intelligence in veterinary radiation oncology.
    Leary D; Basran PS
    Vet Radiol Ultrasound; 2022 Dec; 63 Suppl 1():903-912. PubMed ID: 36514233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Balancing accuracy and interpretability of machine learning approaches for radiation treatment outcomes modeling.
    Luo Y; Tseng HH; Cui S; Wei L; Ten Haken RK; El Naqa I
    BJR Open; 2019; 1(1):20190021. PubMed ID: 33178948
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.