These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
135 related articles for article (PubMed ID: 35868046)
1. ACP-check: An anticancer peptide prediction model based on bidirectional long short-term memory and multi-features fusion strategy. Zhu L; Ye C; Hu X; Yang S; Zhu C Comput Biol Med; 2022 Sep; 148():105868. PubMed ID: 35868046 [TBL] [Abstract][Full Text] [Related]
2. ACP-BC: A Model for Accurate Identification of Anticancer Peptides Based on Fusion Features of Bidirectional Long Short-Term Memory and Chemically Derived Information. Sun M; Hu H; Pang W; Zhou Y Int J Mol Sci; 2023 Oct; 24(20):. PubMed ID: 37895128 [TBL] [Abstract][Full Text] [Related]
3. ACP-DL: A Deep Learning Long Short-Term Memory Model to Predict Anticancer Peptides Using High-Efficiency Feature Representation. Yi HC; You ZH; Zhou X; Cheng L; Li X; Jiang TH; Chen ZH Mol Ther Nucleic Acids; 2019 Sep; 17():1-9. PubMed ID: 31173946 [TBL] [Abstract][Full Text] [Related]
4. ACP-PDAFF: Pretrained model and dual-channel attentional feature fusion for anticancer peptides prediction. Wang X; Wang S Comput Biol Chem; 2024 Oct; 112():108141. PubMed ID: 38996756 [TBL] [Abstract][Full Text] [Related]
5. Anti-cancer Peptide Recognition Based on Grouped Sequence and Spatial Dimension Integrated Networks. You H; Yu L; Tian S; Ma X; Xing Y; Song J; Wu W Interdiscip Sci; 2022 Mar; 14(1):196-208. PubMed ID: 34637113 [TBL] [Abstract][Full Text] [Related]
6. CL-ACP: a parallel combination of CNN and LSTM anticancer peptide recognition model. Wang H; Zhao J; Zhao H; Li H; Wang J BMC Bioinformatics; 2021 Oct; 22(1):512. PubMed ID: 34670488 [TBL] [Abstract][Full Text] [Related]
7. DLFF-ACP: prediction of ACPs based on deep learning and multi-view features fusion. Cao R; Wang M; Bin Y; Zheng C PeerJ; 2021; 9():e11906. PubMed ID: 34414035 [TBL] [Abstract][Full Text] [Related]
8. ACPred-BMF: bidirectional LSTM with multiple feature representations for explainable anticancer peptide prediction. Han B; Zhao N; Zeng C; Mu Z; Gong X Sci Rep; 2022 Dec; 12(1):21915. PubMed ID: 36535969 [TBL] [Abstract][Full Text] [Related]
9. Learning embedding features based on multisense-scaled attention architecture to improve the predictive performance of anticancer peptides. He W; Wang Y; Cui L; Su R; Wei L Bioinformatics; 2021 Dec; 37(24):4684-4693. PubMed ID: 34323948 [TBL] [Abstract][Full Text] [Related]
10. ACP-ADA: A Boosting Method with Data Augmentation for Improved Prediction of Anticancer Peptides. Bhattarai S; Kim KS; Tayara H; Chong KT Int J Mol Sci; 2022 Oct; 23(20):. PubMed ID: 36293050 [TBL] [Abstract][Full Text] [Related]
11. ACP-MLC: A two-level prediction engine for identification of anticancer peptides and multi-label classification of their functional types. Deng H; Ding M; Wang Y; Li W; Liu G; Tang Y Comput Biol Med; 2023 May; 158():106844. PubMed ID: 37058760 [TBL] [Abstract][Full Text] [Related]
12. ACPred-Fuse: fusing multi-view information improves the prediction of anticancer peptides. Rao B; Zhou C; Zhang G; Su R; Wei L Brief Bioinform; 2020 Sep; 21(5):1846-1855. PubMed ID: 31729528 [TBL] [Abstract][Full Text] [Related]
13. Prediction of anticancer peptides based on an ensemble model of deep learning and machine learning using ordinal positional encoding. Yuan Q; Chen K; Yu Y; Le NQK; Chua MCH Brief Bioinform; 2023 Jan; 24(1):. PubMed ID: 36642410 [TBL] [Abstract][Full Text] [Related]
14. ACP_MS: prediction of anticancer peptides based on feature extraction. Zhou C; Peng D; Liao B; Jia R; Wu F Brief Bioinform; 2022 Nov; 23(6):. PubMed ID: 36326080 [TBL] [Abstract][Full Text] [Related]
15. ACP-MHCNN: an accurate multi-headed deep-convolutional neural network to predict anticancer peptides. Ahmed S; Muhammod R; Khan ZH; Adilina S; Sharma A; Shatabda S; Dehzangi A Sci Rep; 2021 Dec; 11(1):23676. PubMed ID: 34880291 [TBL] [Abstract][Full Text] [Related]
16. TriNet: A tri-fusion neural network for the prediction of anticancer and antimicrobial peptides. Zhou W; Liu Y; Li Y; Kong S; Wang W; Ding B; Han J; Mou C; Gao X; Liu J Patterns (N Y); 2023 Mar; 4(3):100702. PubMed ID: 36960450 [TBL] [Abstract][Full Text] [Related]
17. ACP-Dnnel: anti-coronavirus peptides' prediction based on deep neural network ensemble learning. Liu M; Liu H; Wu T; Zhu Y; Zhou Y; Huang Z; Xiang C; Huang J Amino Acids; 2023 Sep; 55(9):1121-1136. PubMed ID: 37402073 [TBL] [Abstract][Full Text] [Related]
18. ME-ACP: Multi-view neural networks with ensemble model for identification of anticancer peptides. Feng G; Yao H; Li C; Liu R; Huang R; Fan X; Ge R; Miao Q Comput Biol Med; 2022 Jun; 145():105459. PubMed ID: 35358753 [TBL] [Abstract][Full Text] [Related]
19. iAVPs-ResBi: Identifying antiviral peptides by using deep residual network and bidirectional gated recurrent unit. Ma X; Liang Y; Zhang S Math Biosci Eng; 2023 Dec; 20(12):21563-21587. PubMed ID: 38124610 [TBL] [Abstract][Full Text] [Related]
20. ACP-DA: Improving the Prediction of Anticancer Peptides Using Data Augmentation. Chen XG; Zhang W; Yang X; Li C; Chen H Front Genet; 2021; 12():698477. PubMed ID: 34276801 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]