These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 35868274)

  • 21. Molecular characterization of the complex sex-chromosome heterochromatin in the rodent Microtus chrotorrhinus.
    Ivanov SV; Modi WS
    Cytogenet Cell Genet; 1996; 75(1):49-56. PubMed ID: 8995489
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Repetitive Elements in Humans.
    Liehr T
    Int J Mol Sci; 2021 Feb; 22(4):. PubMed ID: 33669810
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Structural and functional liaisons between transposable elements and satellite DNAs.
    Meštrović N; Mravinac B; Pavlek M; Vojvoda-Zeljko T; Šatović E; Plohl M
    Chromosome Res; 2015 Sep; 23(3):583-96. PubMed ID: 26293606
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Satellite DNA as a driver of population divergence in the red flour beetle Tribolium castaneum.
    Feliciello I; Akrap I; Brajković J; Zlatar I; Ugarković Đ
    Genome Biol Evol; 2014 Dec; 7(1):228-39. PubMed ID: 25527837
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Protection of repetitive DNA borders from self-induced meiotic instability.
    Vader G; Blitzblau HG; Tame MA; Falk JE; Curtin L; Hochwagen A
    Nature; 2011 Aug; 477(7362):115-9. PubMed ID: 21822291
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Parallelism in evolution of highly repetitive DNAs in sibling species.
    Mravinac B; Plohl M
    Mol Biol Evol; 2010 Aug; 27(8):1857-67. PubMed ID: 20203289
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Potential genetic functions of tandem repeated DNA sequence blocks in the human genome are based on a highly conserved "chromatin folding code".
    Vogt P
    Hum Genet; 1990 Mar; 84(4):301-36. PubMed ID: 2407640
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Sequence Composition Underlying Centromeric and Heterochromatic Genome Compartments of the Pacific Oyster
    Tunjić Cvitanić M; Vojvoda Zeljko T; Pasantes JJ; García-Souto D; Gržan T; Despot-Slade E; Plohl M; Šatović E
    Genes (Basel); 2020 Jun; 11(6):. PubMed ID: 32599860
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Divergence of repetitive DNA sequences in the heterochromatin of medaka fishes: Molecular cytogenetic characterization of constitutive heterochromatin in two medaka species: Oryzias hubbsi and O. celebensis (Adrianichthyidae, Beloniformes).
    Uno Y; Asada Y; Nishida C; Takehana Y; Sakaizumi M; Matsuda Y
    Cytogenet Genome Res; 2013; 141(2-3):212-26. PubMed ID: 24028862
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular and cytogenetic characterization of site-specific repetitive DNA sequences in the Chinese soft-shelled turtle (Pelodiscus sinensis, Trionychidae).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosome Res; 2005; 13(1):33-46. PubMed ID: 15791410
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Improved repeat identification and masking in Dipterans.
    Smith CD; Edgar RC; Yandell MD; Smith DR; Celniker SE; Myers EW; Karpen GH
    Gene; 2007 Mar; 389(1):1-9. PubMed ID: 17137733
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Molecular cytogenetics in the study of repetitive sequences helping to understand the evolution of heterochromatin in Melipona (Hymenoptera, Meliponini).
    Pereira JA; Travenzoli NM; de Oliveira MP; de Azevedo Werneck H; Salomão TMF; Lopes DM
    Genetica; 2021 Feb; 149(1):55-62. PubMed ID: 33449238
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Molecular Cytogenetic Characterization of C-Band-Positive Heterochromatin of the Greater Long-Tailed Hamster (Tscherskia triton, Cricetinae).
    Kamimura E; Uno Y; Yamada K; Nishida C; Matsuda Y
    Cytogenet Genome Res; 2022; 162(6):323-333. PubMed ID: 36535261
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Lsh, a guardian of heterochromatin at repeat elements.
    Muegge K
    Biochem Cell Biol; 2005 Aug; 83(4):548-54. PubMed ID: 16094458
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Serial segmental duplications during primate evolution result in complex human genome architecture.
    Stankiewicz P; Shaw CJ; Withers M; Inoue K; Lupski JR
    Genome Res; 2004 Nov; 14(11):2209-20. PubMed ID: 15520286
    [TBL] [Abstract][Full Text] [Related]  

  • 36. The secret message of heterochromatin: new insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription.
    Eymery A; Callanan M; Vourc'h C
    Int J Dev Biol; 2009; 53(2-3):259-68. PubMed ID: 19412885
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Prototypic sequences for human repetitive DNA.
    Jurka J; Walichiewicz J; Milosavljevic A
    J Mol Evol; 1992 Oct; 35(4):286-91. PubMed ID: 1404414
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Evolution and distribution of (GT)n repetitive sequences in mammalian genomes.
    Stallings RL; Ford AF; Nelson D; Torney DC; Hildebrand CE; Moyzis RK
    Genomics; 1991 Jul; 10(3):807-15. PubMed ID: 1909685
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Repetitive elements may comprise over two-thirds of the human genome.
    de Koning AP; Gu W; Castoe TA; Batzer MA; Pollock DD
    PLoS Genet; 2011 Dec; 7(12):e1002384. PubMed ID: 22144907
    [TBL] [Abstract][Full Text] [Related]  

  • 40. A 1.5 kb repeat sequence flanks the suppressor of forked gene at the euchromatin-heterochromatin boundary of the Drosophila melanogaster X chromosome.
    Tudor M; Mitchelson A; O'Hare K
    Genet Res; 1996 Dec; 68(3):191-202. PubMed ID: 9062076
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.