These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

314 related articles for article (PubMed ID: 35868274)

  • 41. Repetitive elements may comprise over two-thirds of the human genome.
    de Koning AP; Gu W; Castoe TA; Batzer MA; Pollock DD
    PLoS Genet; 2011 Dec; 7(12):e1002384. PubMed ID: 22144907
    [TBL] [Abstract][Full Text] [Related]  

  • 42. A 1.5 kb repeat sequence flanks the suppressor of forked gene at the euchromatin-heterochromatin boundary of the Drosophila melanogaster X chromosome.
    Tudor M; Mitchelson A; O'Hare K
    Genet Res; 1996 Dec; 68(3):191-202. PubMed ID: 9062076
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Long-read mapping to repetitive reference sequences using Winnowmap2.
    Jain C; Rhie A; Hansen NF; Koren S; Phillippy AM
    Nat Methods; 2022 Jun; 19(6):705-710. PubMed ID: 35365778
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Expression dynamics of repetitive DNA in early human embryonic development.
    Yandım C; Karakülah G
    BMC Genomics; 2019 May; 20(1):439. PubMed ID: 31151386
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Widespread occurrence of power-law distributions in inter-repeat distances shaped by genome dynamics.
    Klimopoulos A; Sellis D; Almirantis Y
    Gene; 2012 May; 499(1):88-98. PubMed ID: 22370293
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A new family of satellite DNA sequences as a major component of centromeric heterochromatin in owls (Strigiformes).
    Yamada K; Nishida-Umehara C; Matsuda Y
    Chromosoma; 2004 Mar; 112(6):277-87. PubMed ID: 14997323
    [TBL] [Abstract][Full Text] [Related]  

  • 47. MicroRNA genes derived from repetitive elements and expanded by segmental duplication events in mammalian genomes.
    Yuan Z; Sun X; Liu H; Xie J
    PLoS One; 2011 Mar; 6(3):e17666. PubMed ID: 21436881
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Microcloning reveals a high frequency of repetitive sequences characteristic of chromosome 4 and the beta-heterochromatin of Drosophila melanogaster.
    Miklos GL; Yamamoto MT; Davies J; Pirrotta V
    Proc Natl Acad Sci U S A; 1988 Apr; 85(7):2051-5. PubMed ID: 3127823
    [TBL] [Abstract][Full Text] [Related]  

  • 49. To Repeat or Not to Repeat: Repetitive Sequences Regulate Genome Stability in
    Dunn MJ; Anderson MZ
    Genes (Basel); 2019 Oct; 10(11):. PubMed ID: 31671659
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Molecular cloning and characterization of the repetitive DNA sequences that comprise the constitutive heterochromatin of the A and B chromosomes of the Korean field mouse (Apodemus peninsulae, Muridae, Rodentia).
    Matsubara K; Yamada K; Umemoto S; Tsuchiya K; Ikeda N; Nishida C; Chijiwa T; Moriwaki K; Matsuda Y
    Chromosome Res; 2008; 16(7):1013-26. PubMed ID: 18949567
    [TBL] [Abstract][Full Text] [Related]  

  • 51. [A new family of repeated sequences in heterochromatin regions of the Drosophila melanogaster genome].
    Balakireva MD; Shevelev IuIa; Gvozdev VA
    Dokl Akad Nauk SSSR; 1988; 299(1):231-6. PubMed ID: 2837381
    [No Abstract]   [Full Text] [Related]  

  • 52. FISH mapping and molecular organization of the major repetitive sequences of tomato.
    Chang SB; Yang TJ; Datema E; van Vugt J; Vosman B; Kuipers A; Meznikova M; Szinay D; Lankhorst RK; Jacobsen E; de Jong H
    Chromosome Res; 2008; 16(7):919-33. PubMed ID: 18688733
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Epigenetic analyses and the distribution of repetitive DNA and resistance genes reveal the complexity of common bean (Phaseolus vulgaris L., Fabaceae) heterochromatin.
    Fonsêca A; Richard MM; Geffroy V; Pedrosa-Harand A
    Cytogenet Genome Res; 2014; 143(1-3):168-78. PubMed ID: 24752176
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Translocation and gross deletion breakpoints in human inherited disease and cancer II: Potential involvement of repetitive sequence elements in secondary structure formation between DNA ends.
    Chuzhanova N; Abeysinghe SS; Krawczak M; Cooper DN
    Hum Mutat; 2003 Sep; 22(3):245-51. PubMed ID: 12938089
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Structure-forming repeats and their impact on genome stability.
    Brown RE; Freudenreich CH
    Curr Opin Genet Dev; 2021 Apr; 67():41-51. PubMed ID: 33279816
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Nonrandom localization of recombination events in human alpha satellite repeat unit variants: implications for higher-order structural characteristics within centromeric heterochromatin.
    Warburton PE; Waye JS; Willard HF
    Mol Cell Biol; 1993 Oct; 13(10):6520-9. PubMed ID: 8413251
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Exploiting the informativity of 'meaningless' simple repetitive DNA from indirect gene diagnosis to multilocus genome scanning.
    Epplen JT; Mäueler W; Epplen C
    Biol Chem Hoppe Seyler; 1994 Dec; 375(12):795-801. PubMed ID: 7710693
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Assembly and functions of heterochromatin in the fission yeast genome.
    Aygün O; Grewal SI
    Cold Spring Harb Symp Quant Biol; 2010; 75():259-67. PubMed ID: 21502415
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Diverse silent chromatin states modulate genome compartmentalization and loop extrusion barriers.
    Spracklin G; Abdennur N; Imakaev M; Chowdhury N; Pradhan S; Mirny LA; Dekker J
    Nat Struct Mol Biol; 2023 Jan; 30(1):38-51. PubMed ID: 36550219
    [TBL] [Abstract][Full Text] [Related]  

  • 60. The Organization of Repetitive DNA in the Genomes of Amazonian Lizard Species in the Family Teiidae.
    Carvalho ND; Pinheiro VS; Carmo EJ; Goll LG; Schneider CH; Gross MC
    Cytogenet Genome Res; 2015; 147(2-3):161-8. PubMed ID: 26867142
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 16.