These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

117 related articles for article (PubMed ID: 35868354)

  • 1. Comparison of machine learning and the regression-based EHMRG model for predicting early mortality in acute heart failure.
    Austin DE; Lee DS; Wang CX; Ma S; Wang X; Porter J; Wang B
    Int J Cardiol; 2022 Oct; 365():78-84. PubMed ID: 35868354
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Machine learning-based risk prediction of malignant arrhythmia in hospitalized patients with heart failure.
    Wang Q; Li B; Chen K; Yu F; Su H; Hu K; Liu Z; Wu G; Yan J; Su G
    ESC Heart Fail; 2021 Dec; 8(6):5363-5371. PubMed ID: 34585531
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of Machine Learning Methods With Traditional Models for Use of Administrative Claims With Electronic Medical Records to Predict Heart Failure Outcomes.
    Desai RJ; Wang SV; Vaduganathan M; Evers T; Schneeweiss S
    JAMA Netw Open; 2020 Jan; 3(1):e1918962. PubMed ID: 31922560
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Machine Learning-Based Models Incorporating Social Determinants of Health vs Traditional Models for Predicting In-Hospital Mortality in Patients With Heart Failure.
    Segar MW; Hall JL; Jhund PS; Powell-Wiley TM; Morris AA; Kao D; Fonarow GC; Hernandez R; Ibrahim NE; Rutan C; Navar AM; Stevens LM; Pandey A
    JAMA Cardiol; 2022 Aug; 7(8):844-854. PubMed ID: 35793094
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Comparison of machine learning and conventional statistical modeling for predicting readmission following acute heart failure hospitalization.
    Abdul-Samad K; Ma S; Austin DE; Chong A; Wang CX; Wang X; Austin PC; Ross HJ; Wang B; Lee DS
    Am Heart J; 2024 Nov; 277():93-103. PubMed ID: 39094840
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Machine ​learning algorithms for claims data-based prediction of in-hospital mortality in patients with heart failure.
    König S; Pellissier V; Hohenstein S; Bernal A; Ueberham L; Meier-Hellmann A; Kuhlen R; Hindricks G; Bollmann A
    ESC Heart Fail; 2021 Aug; 8(4):3026-3036. PubMed ID: 34085775
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Prediction model of in-hospital mortality in intensive care unit patients with heart failure: machine learning-based, retrospective analysis of the MIMIC-III database.
    Li F; Xin H; Zhang J; Fu M; Zhou J; Lian Z
    BMJ Open; 2021 Jul; 11(7):e044779. PubMed ID: 34301649
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Machine learning-based model for predicting 1 year mortality of hospitalized patients with heart failure.
    Tohyama T; Ide T; Ikeda M; Kaku H; Enzan N; Matsushima S; Funakoshi K; Kishimoto J; Todaka K; Tsutsui H
    ESC Heart Fail; 2021 Oct; 8(5):4077-4085. PubMed ID: 34390311
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Machine learning vs. conventional statistical models for predicting heart failure readmission and mortality.
    Shin S; Austin PC; Ross HJ; Abdel-Qadir H; Freitas C; Tomlinson G; Chicco D; Mahendiran M; Lawler PR; Billia F; Gramolini A; Epelman S; Wang B; Lee DS
    ESC Heart Fail; 2021 Feb; 8(1):106-115. PubMed ID: 33205591
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Machine Learning Prediction of Mortality and Hospitalization in Heart Failure With Preserved Ejection Fraction.
    Angraal S; Mortazavi BJ; Gupta A; Khera R; Ahmad T; Desai NR; Jacoby DL; Masoudi FA; Spertus JA; Krumholz HM
    JACC Heart Fail; 2020 Jan; 8(1):12-21. PubMed ID: 31606361
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Predicting Sepsis Mortality in a Population-Based National Database: Machine Learning Approach.
    Park JY; Hsu TC; Hu JR; Chen CY; Hsu WT; Lee M; Ho J; Lee CC
    J Med Internet Res; 2022 Apr; 24(4):e29982. PubMed ID: 35416785
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Machine learning model for predicting 1-year and 3-year all-cause mortality in ischemic heart failure patients.
    Cai A; Chen R; Pang C; Liu H; Zhou Y; Chen J; Li L
    Postgrad Med; 2022 Nov; 134(8):810-819. PubMed ID: 35984114
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of Machine Learning Models to Predict Death After Acute Myocardial Infarction.
    Khera R; Haimovich J; Hurley NC; McNamara R; Spertus JA; Desai N; Rumsfeld JS; Masoudi FA; Huang C; Normand SL; Mortazavi BJ; Krumholz HM
    JAMA Cardiol; 2021 Jun; 6(6):633-641. PubMed ID: 33688915
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Prediction of 30-Day All-Cause Readmissions in Patients Hospitalized for Heart Failure: Comparison of Machine Learning and Other Statistical Approaches.
    Frizzell JD; Liang L; Schulte PJ; Yancy CW; Heidenreich PA; Hernandez AF; Bhatt DL; Fonarow GC; Laskey WK
    JAMA Cardiol; 2017 Feb; 2(2):204-209. PubMed ID: 27784047
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Predicting Survived Events in Nontraumatic Out-of-Hospital Cardiac Arrest: A Comparison Study on Machine Learning and Regression Models.
    Lo YH; Siu YCA
    J Emerg Med; 2021 Dec; 61(6):683-694. PubMed ID: 34548227
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Use of Machine Learning to Develop Prediction Models for Mortality and Stroke in Patients Undergoing Balloon Aortic Valvuloplasty.
    Bansal A; Kumar A; Garg C; Kalra A; Puri R; Kapadia SR; Reed GW
    Cardiovasc Revasc Med; 2022 Dec; 45():26-34. PubMed ID: 35931638
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Machine learning algorithms performed no better than regression models for prognostication in traumatic brain injury.
    Gravesteijn BY; Nieboer D; Ercole A; Lingsma HF; Nelson D; van Calster B; Steyerberg EW;
    J Clin Epidemiol; 2020 Jun; 122():95-107. PubMed ID: 32201256
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Machine learning methods are comparable to logistic regression techniques in predicting severe walking limitation following total knee arthroplasty.
    Pua YH; Kang H; Thumboo J; Clark RA; Chew ES; Poon CL; Chong HC; Yeo SJ
    Knee Surg Sports Traumatol Arthrosc; 2020 Oct; 28(10):3207-3216. PubMed ID: 31832697
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Novel Composite Indicator of Predicting Mortality Risk for Heart Failure Patients With Diabetes Admitted to Intensive Care Unit Based on Machine Learning.
    Yang B; Zhu Y; Lu X; Shen C
    Front Endocrinol (Lausanne); 2022; 13():917838. PubMed ID: 35846312
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Evaluation of Machine Learning Algorithms for Predicting Readmission After Acute Myocardial Infarction Using Routinely Collected Clinical Data.
    Gupta S; Ko DT; Azizi P; Bouadjenek MR; Koh M; Chong A; Austin PC; Sanner S
    Can J Cardiol; 2020 Jun; 36(6):878-885. PubMed ID: 32204950
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.